Our patient price estimator tool will be activated by January 1, 2021 or sooner.
Patient Price Information List
Disclaimer: Gonzales Healthcare Systems determines its standard charges for patient items and services through the use of a chargemaster system, which is a list of charges for the components of patient care that go into every patient’s bill. These are the baseline rates for items and services provided at the Hospital. The chargemaster is similar in concept to the manufacturer’s suggested retail price (“MSRP”) on a particular product or good. The charges listed provide only a general starting point in determining the potential costs of an individual patient’s care at the Hospital. This list does not reflect the actual out-of-pocket costs that may be paid by a patient for any particular service, it is not binding, and the actual charges for items and services may vary.
Many factors may influence the actual cost of an item or service, including insurance coverage, rates negotiated with payors, and so on. Government payors, such as Medicare and Medicaid for example, do not pay the chargemaster rates, but rather have their own set rates that hospitals are obligated to accept. Commercial insurance payments are based on contract negotiations with payors and may or may not reflect the standard charges. The cost of treatment also may be impacted by variables involved in a patient’s actual care, such as specific equipment or supplies required, the length of time spent in surgery or recovery, additional tests, or any changes in care or unexpected conditions or complications that arise. Moreover, the foregoing list of charges for services only includes charges from the Hospital. It does not reflect the charges for physicians, such as the surgeon, anesthesiologist, radiologist, pathologist, or other physician specialists or providers who may be involved in providing particular services to a patient. These charges are billed separately.
Individuals with questions about their out-of-pocket costs of service and other financial information should contact the hospital or consider contacting their insurers for further information.
Gonzales Healthcare Systems Patient Information Price List
LOCAL MARKET HOSPITALS
In order to present a meaningful comparison, Gonzales Healthcare Systems has partnered with Hospital Pricing Specialists LLC to analyze current charges, based off CMS adjudicated claims through 3/31/2020. Gonzales Healthcare Systems's charges are displayed and compared with the local market charge, consisting of the following hospitals:
Central Texas Medical Center
San Marcos
TX
Citizens Medical Center
Victoria
TX
Cuero Community Hospital
Cuero
TX
Detar Hospital Navarro
Victoria
TX
El Campo Memorial Hospital
El Campo
TX
Guadalupe Regional Medical Ctr
Seguin
TX
Lavaca Medical Center
Hallettsville
TX
Saint Mark's Medical Center
La Grange
TX
Seton Edgar B. Davis Hospital
Luling
TX
Seton Medical Center Hays
Kyle
TX
Seton Smithville Regional Hospital
Smithville
TX
Yoakum Community Hospital
Yoakum
TX
Gonzales Healthcare Systems Patient Information Price List
INPATIENT ROOM AND BOARD DAILY CHARGES
INPATIENT ROOM AND BOARD DAILY CHARGES
Description
Variance
Private Room
Private Room
62% lower than market
Semi-Private Room
Semi-Private Room
61% lower than market
Intensive Care Unit
Intensive Care Unit
60% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT EMERGENCY DEPARTMENT CHARGES
OUTPATIENT EMERGENCY DEPARTMENT CHARGES
Emergency Department charges are based on the level of emergency care provided to our patients. The levels, with Level 1 representing basic emergency care, reflect the type of accommodations needed, the personnel resources, the intensity of care and the amount of time needed to provide treatment. The following charges do not include fees for drugs, supplies or additional ancillary procedures that may be required for a particular emergency treatment. They also do not include fees for Emergency Department physicians, who will bill separately for their services.
Description
Variance
Emergency Department Visit - Level 1
Emergency Department Visit - Level 1
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components: A problem focused history; A problem focused examination; and Straightforward medical decision making. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are self limited or minor.
31% lower than market
Emergency Department Visit - Level 2
Emergency Department Visit - Level 2
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components: An expanded problem focused history; An expanded problem focused examination; and Medical decision making of low complexity. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are of low to moderate severity.
37% lower than market
Emergency Department Visit - Level 3
Emergency Department Visit - Level 3
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components: An expanded problem focused history; An expanded problem focused examination; and Medical decision making of moderate complexity. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are of moderate severity.
51% lower than market
Emergency Department Visit - Level 4
Emergency Department Visit - Level 4
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components: A detailed history; A detailed examination; and Medical decision making of moderate complexity. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are of high severity, and require urgent evaluation by the physician or other qualified health care professionals but do not pose an immediate significant threat to life or physiologic function.
58% lower than market
Emergency Department Visit - Level 5
Emergency Department Visit - Level 5
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components within the constraints imposed by the urgency of the patient's clinical condition and/or mental status: A comprehensive history; A comprehensive examination; and Medical decision making of high complexity. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are of high severity and pose an immediate significant threat to life or physiologic function.
61% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT PHYSICAL THERAPY CHARGES
OUTPATIENT PHYSICAL THERAPY CHARGES
The following charges reflect the most common services offered by our Physical Therapy department. Patients may have additional charges, depending on the services performed.
Description
Variance
Gait Training - 15 Minutes
Gait Training - 15 Minutes
Gait training is a therapeutic procedure that observes and educates an individual in the manner of walking including the rhythm, cadence, step, stride, and speed. The objective of gait training is to strengthen muscles and joints, improve balance and posture, and develop muscle memory. As the lower extremities are retrained for repetitive motion, the body also benefits from the exercise with increased endurance, improved heart/lung function, and reduced or improved osteoporosis. Gait training is an appropriate therapeutic procedure following brain and/or spinal cord injury, stroke, fracture of the pelvis and/or lower extremity, joint injury or replacement of the knee, hip, or ankle, amputation, and for certain musculoskeletal and/or neurological diseases. A treadmill fitted with a safety harness is initially used to ensure safe walking. As the patient gains strength and balance, step training and stair climbing is added to the treatment modality.
34% lower than market
PT Evaluation - Moderate Complexity
PT Evaluation - Moderate Complexity
A physical therapy evaluation or re-evaluation is performed. The physical therapist takes a history of the current complaint including onset of symptoms, comorbidities, changes since the onset, treatment received for the symptoms or condition, medications prescribed for it, and any other medications the patient is taking. A physical examination of body systems is done to assess physical structure and function, any activities or movements that exacerbate the symptoms, limit activity, or restrict participation in movement, as well as anything that helps to relieve the symptoms. The evaluation may involve provocative maneuvers or positions that increase symptoms; tests for joint flexibility and muscle strength; assessments of general mobility, posture, and core strength; evaluation of muscle tone; and tests for restrictions of movement caused by myofascial disorders. Following the history and physical, the therapist determines the patient's clinical presentation characteristics, provides a detailed explanation of the condition, identifies physical therapy treatment options, and explains how often and how long physical therapy modalities should be applied. The physical therapist will then develop a plan of care with clinical decision making based on patient assessment and/or measurable functional outcome. The plan of care may include both physical therapy in the clinic and exercises or changes in the home environment. Upon re-evaluation, the established care plan is reviewed and an interim history is taken requiring the use of standardized tests and measures. The patient's response to treatment is evaluated and the plan of care is revised based on the patient's measurable response.
21% lower than market
PT to Re-Educate Brain to Muscle Function (15 min)
PT to Re-Educate Brain to Muscle Function (15 min)
Therapeutic procedures for neuromuscular reeducation are used to develop conscious control of a single muscle or muscle group and heighten the awareness of the body's position in space, especially the position of the extremities when sitting or standing. Neuromuscular reeducation is employed during the recovery or regeneration stage following severe injury or trauma, cerebral vascular accident, or systemic neurological disease. The goal of therapy is improved range of motion (ROM), balance, coordination, posture, and spatial awareness. Techniques may include proprioceptive neuromuscular facilitation which uses diagonal contract-relax patterns of skeletal muscles to stimulate receptors in the joints that communicate body position to the brain via motor and sensory nerves. Feldenkrais is a method which observes the patient's habitual movement patterns and teaches new patterns based on efficient active or passive repetitive conditioning. Additional techniques that may be useful for neuromuscular reeducation are Bobath concept, which promotes motor learning and efficient motor control, and biomechanical ankle platform system (BAPS) boards.
28% lower than market
Physical Therapy 1 or More Regions (15 min)
Physical Therapy 1 or More Regions (15 min)
Manual therapies are skilled, specific, hands-on techniques usually performed by physical therapists, occupational therapists, chiropractors, osteopaths, and/or physiatrists to diagnose and treat soft tissue and joint problems. The goal of manual therapy is to modulate pain and induce relaxation, increase range of motion (ROM), facilitate movement, function, and stability, decrease inflammation, and improve muscle tone and extensibility. Tissue mobilization involves slow, controlled myofascial stretching using deep pressure to break up fibrous muscle tissue and/or connective tissue adhesions. Manipulation is a more forceful stretching of the myofascial tissue that takes the joint just beyond its restricted barrier. Manual lymphatic drainage is a type of light massage employed to reduce swelling by gentle movement of the skin in the direction of lymphatic flow. Manual traction involves the controlled counterforce of the therapist to induce asymptomatic strain by gently stretching muscle and/or connective tissue.
3% higher than market
Physical Therapy Exercise, 15 Minutes
Physical Therapy Exercise, 15 Minutes
Therapeutic exercise is the application of careful, graduated force to the body to increase strength, endurance, range of motion, and flexibility. Increased muscle strength is achieved by the deliberate overloading of a targeted muscle or muscle group and improved endurance is achieved by raising the intensity of the strengthening exercise to the targeted area(s) over a prolonged period of time. To maintain range of motion (ROM) and flexibility requires the careful movement and stretching of contractile and non-contractile tissue that may tighten with injury or neurological disease, causing weakness and/or spasticity. Therapeutic exercise can increase blood flow to the targeted area, reduce pain and inflammation, reduce the risk of blood clots from venous stasis, decrease muscle atrophy and improve coordination and motor control. Therapeutic exercise may be prescribed following acute illness or injury and for chronic conditions that affect physical activity or function.
53% lower than market
Physical Therapy, standard evaluation - 20 minutes
Physical Therapy, standard evaluation - 20 minutes
A physical therapy evaluation or re-evaluation is performed. The physical therapist takes a history of the current complaint including onset of symptoms, comorbidities, changes since the onset, treatment received for the symptoms or condition, medications prescribed for it, and any other medications the patient is taking. A physical examination of body systems is done to assess physical structure and function, any activities or movements that exacerbate the symptoms, limit activity, or restrict participation in movement, as well as anything that helps to relieve the symptoms. The evaluation may involve provocative maneuvers or positions that increase symptoms; tests for joint flexibility and muscle strength; assessments of general mobility, posture, and core strength; evaluation of muscle tone; and tests for restrictions of movement caused by myofascial disorders. Following the history and physical, the therapist determines the patient's clinical presentation characteristics, provides a detailed explanation of the condition, identifies physical therapy treatment options, and explains how often and how long physical therapy modalities should be applied. The physical therapist will then develop a plan of care with clinical decision making based on patient assessment and/or measurable functional outcome. The plan of care may include both physical therapy in the clinic and exercises or changes in the home environment. Upon re-evaluation, the established care plan is reviewed and an interim history is taken requiring the use of standardized tests and measures. The patient's response to treatment is evaluated and the plan of care is revised based on the patient's measurable response.
17% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT OCCUPATIONAL THERAPY CHARGES
OUTPATIENT OCCUPATIONAL THERAPY CHARGES
The following charges reflect the most common services offered by our Occupational Therapy department. Patients may have additional charges, depending on the services performed.
Description
Variance
Therapeutic Activities Involving Functional Activities (15 min)
Therapeutic Activities Involving Functional Activities (15 min)
In a one-on-one physical therapy session, the provider instructs and assists the patient in therapeutic activities designed to address specific functional limitations. The therapeutic activities are specifically developed and modified for the patient. Dynamic/movement activities, also called kinetic activities, that are designed to improve functional performance such as lifting, bending, pushing, pulling, jumping and reaching are included in this service. For example, the patient may be given therapeutic activities to perform to improve the ability to sit, stand, and get out of bed after an injury without straining or risking reinjury. This code is reported for each 15 minutes of one-on-one therapeutic activity provided.
53% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT PULMONARY THERAPY CHARGES
OUTPATIENT PULMONARY THERAPY CHARGES
The following charges reflect the most common services offered by our Pulmonary Therapy department. Patients may have additional charges, depending on the services performed.
Description
Variance
Aerosol Treatment
Aerosol Treatment
A patient or caregiver receives a demonstration of and training in the use of an aerosol generator, nebulizer, metered dose inhaler, or IPPB device. The effectiveness of inhaled medications is in part dependent on the proficiency of the patient or a caregiver in using the prescribed device. The delivery device is selected based on the type of medication being administered and the ability of the patient or caregiver to master use of the device. The provider, usually a respiratory therapist, demonstrates use of the device and explains in detail why and how the medication and device must be used for maximum effectiveness. The patient or caregiver is then observed as he/she uses the device. The respiratory therapist offers help and clarification on the use of the device as needed. Correct use of the device may require more than one demonstration and training session.
79% lower than market
Routine EKG - Minimum 12 Leads
Routine EKG - Minimum 12 Leads
An ECG is used to evaluate the electrical activity of the heart. The test is performed with the patient lying prone on the exam table. Small plastic patches are attached at specific locations on the chest, abdomen, arms, and/or legs. Leads (wires) from the ECG tracing device are then attached to the patches. A tracing is obtained of the electrical signals from the heart. Electrical activity begins in the sinoatrial node which generates an electrical stimulus at regular intervals, usually 60 to 100 times per minute. This stimulus travels through the conduction pathways to the sinoatrial node causing the atria to contract. The stimulus then travels along the bundle of His which divides into right and left pathways providing electrical stimulation of the ventricles causing them to contract. Each contraction of the ventricles represents one heart beat. The ECG tracing includes the following elements: P wave, QRS complex, ST segment, and T wave. The P wave, a small upward notch in the tracing, indicates electrical stimulation of the atria. This is followed by the QRS complex which indicates the ventricles are electrically stimulated to contract. The short flat ST segment follows and indicates the time between the end of the ventricular contraction and the T wave. The T wave represents the recovery period of the ventricles. The physician reviews, interprets, and provides a written report of the ECG recording taking care to note any abnormalities.
31% lower than market
Spirometry - medicated breathing procedure
Spirometry - medicated breathing procedure
Spirometry with bronchodilation responsiveness is a pulmonary function test that is used to help diagnose the cause of shortness of breath and to monitor existing pulmonary disease, such as chronic bronchitis, emphysema, pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), and asthma. The test is first performed without administration of a bronchodilator. A spirometry device consisting of a mouthpiece and tubing connected to a machine that records and displays results is used to perform the test. The patient inhales deeply and then exhales through the mouthpiece. Inhalation and exhalation measurements are first taken with the patient breathing normally. The patient is then instructed to perform rapid, forceful inhalation and exhalation. The spirometer records the volume of air inhaled, exhaled, and the length of time each breath takes. A bronchodilator medication is administered and the test is repeated. The test results are displayed on a graph that the physician reviews and interprets in a written report.
35% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT SPEECH THERAPY CHARGES
OUTPATIENT SPEECH THERAPY CHARGES
Description
Variance
Speech Therapy
Speech Therapy
A speech-language pathologist treats a speech, language, voice, communication, and/or auditory processing disorder. Using the information obtained from a separately reportable screening and in-depth evaluation of a speech or language disorder, the clinician develops an individualized treatment plan for the patient. The clinician defines specific treatment goals and sets baseline measures with which to assess the patient's progress. These goals are continuously monitored and fine-tuned throughout the treatment period. Once the goals and baseline measures have been established the clinician uses a number of intervention activities to correct the specific speech or language disorder identified. These can include games, stories, rhymes, drills, and other tasks. If the patient has a speech disorder, the clinician may demonstrate the sounds and have the patient copy the way the clinician moves the lips, mouth, and tongue to make the right sound. A mirror may be used so that the patient can practice making the sound while observing himself or herself in the mirror. Treatment of a language disorder might include help with grammar. If the patient is having difficulty with auditory processing, a game like Simon Says might be used to help improve understanding of verbal instructions.
70% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT LABORATORY AND PATHOLOGY CHARGES
OUTPATIENT LABORATORY AND PATHOLOGY CHARGES
The following charges reflect our most common laboratory procedures. For all lab specimens collected via blood draw, the venipuncture will be charged separately.
Description
Variance
Ammonia level
Ammonia level
A blood test is performed to measure ammonia levels. Ammonia is a by product of protein metabolism and is normally converted to urea by the liver and excreted via the kidney. Elevated ammonia levels may result from cirrhosis or hepatitis. Symptoms of elevated ammonia levels are confusion, tremors, excessive sleepiness, or coma. Testing may be performed in disease states such as Reyes syndrome or liver failure. A blood sample is obtained by a separately reportable venipuncture or arterial access line. The specimen is then tested using colorimetry.
19% lower than market
Amylase (enzyme) level
Amylase (enzyme) level
Laboratory testing for amylase may be performed on blood, urine, and other body fluids. Amylase is an enzyme responsible for the break down of starches into sugar molecules (disaccharides and trisaccharides) and eventually into glucose for energy use by the cells. Amylase is produced in saliva and the pancreas. Abnormal amylase levels may result from pancreatic inflammation or trauma, perforated peptic ulcer, ovarian cyst (torsion), strangulation ileus, macroamylasemia, mumps, and cystic fibrosis. A blood or body fluid sample is obtained. The sample is then tested using quantitative enzymatic methodology.
53% lower than market
Bacterial Blood Culture
Bacterial Blood Culture
A blood sample is drawn and placed in a medium conducive to the growth of bacteria. Any bacteria present in the blood sample will then reveal themselves.
64% lower than market
Bacterial Culture, Any Source Blood
Bacterial Culture, Any Source Blood
A tissue sample is collected and placed in a medium conducive to the growth of bacteria. The culture is examined for the growth of bacteria that can survive without oxygen.
55% lower than market
Bacterial Culture, Any Source Except Urine, Blood, or Stool
Bacterial Culture, Any Source Except Urine, Blood, or Stool
A tissue sample besides blood, urine, or stool is collected and placed in a medium conducive to the growth of bacteria. The culture is examined for the growth of bacteria.
47% lower than market
Bacterial urine culture; quantitative colony count
Bacterial urine culture; quantitative colony count
"A laboratory test is performed to determine the presence or absence of bacterial colonies in urine and provide a colony count. Bacteria in urine may indicate an acute or chronic urinary tract infection (UTI) including pyelonephritis, cystitis, urethritis, or acute urethral syndrome. A urine sample is obtained by clean catch, mid-stream void or catheterization. Using a calibrated loop, the urine specimen is inoculated onto agar plates and incubated. Quantitative colony counts are determined and potential pathogens are identified. A colony count 10,000 cfu/mL is reported as ""organism present"" and may indicate an infection. Comingled flora of the urethra and mixed organisms in the colony counts are reported as ""mixed flora"" and most often represent contamination."
14% lower than market
Bilirubin level (Direct)
Bilirubin level (Direct)
A laboratory test is performed to measure total or direct bilirubin. Bilirubin is a pigmented waste product normally produced when red blood cells (RBCs) break down. Non-water soluble (unconjugated) bilirubin is carried on albumin to the liver where it attaches to sugar molecules to become conjugated. Conjugated (direct) bilirubin is water soluble and able to pass from the liver to the small intestine. Further breakdown of bilirubin occurs in the small intestine and it is eventually eliminated in the feces in the form of stercobilin. Total bilirubin is the sum of conjugated (direct) and unconjugated bilirubin. A test for either conjugated or direct bilirubin or total bilirubin may be ordered to diagnose and monitor liver disorders, hemolytic anemia, and newborn (physiologic) jaundice. A blood sample is obtained by separately reportable venipuncture or heel stick. Other body fluids, including cerebral spinal fluid, may be collected and tested for total bilirubin. Serum/plasma is tested using quantitative spectrophotometry.
34% lower than market
Bleeding time
Bleeding time
74% lower than market
Blood Glucose Scan
Blood Glucose Scan
A portable testing device called a glucometer is used at the patient's home or a physician's office to monitor glucose levels in the the blood. Glucose is a monosaccharide (single sugar) used for energy by the body. Certain diseases, such as diabetes, and medications may cause glucose levels to be abnormally high or low. A blood sample is obtained by fingerstick and placed on a test strip. Most commercial glucometers use a chemically treated test strip that produces a small electric current when blood is introduced. The strength of the electrical charge is dependent on the level of glucose in the sample. The glucose level is displayed on the monitoring device in a numeric measurement as mg/dL. This code is only reported when the physician or other healthcare professional uses this type of device in the office or other setting to check glucose levels, not when the patient self-administers the test.
80% lower than market
Blood Typing, ABO
Blood Typing, ABO
A blood specimen is tested to determine blood type (ABO) or Rh(D). Blood is grouped using an ABO blood typing system which identifies four blood types: type A, B, AB, or O. The blood sample is mixed with antibodies against Type A and B blood and then checked to determine if the blood cells agglutinate, or stick together. Type A blood has anti-B antibodies; type B blood has anti-A antibodies; type O blood has antibodies to both A and B; and type AB blood does not have anti-A or anti-B antibodies. Type A blood agglutinates when type B antibodies are introduced. Type B blood agglutinates when type A antibodies are introduced. Type O blood agglutinates when type A or B antibodies are introduced. Type AB blood does not agglutinate when type A or B antibodies are introduced. The blood is then back typed. Blood serum is mixed with blood that is known to be type A or B.
62% lower than market
Blood Typing, Rh (D)
Blood Typing, Rh (D)
A blood specimen is tested to determine blood type (ABO) or Rh(D). In Rh(D), blood is tested for Rh factor, which is an antigen on red blood cells. Blood is Rh+ if the antigen is present or Rh- if the antigen is absent. Blood is tested by mixing the blood sample with antibodies against Rh factor and then checking for agglutination. If agglutination occurs, the blood is Rh+. If the blood does not agglutinate, it is Rh-.
33% lower than market
Blood Unit Compatibility Test; Antiglobulin Technique
Blood Unit Compatibility Test; Antiglobulin Technique
62% lower than market
Blood Unit Compatibility Test; Immediate Spin Technique
Blood Unit Compatibility Test; Immediate Spin Technique
A laboratory test is performed to determine the donor-recipient compatibility of a unit of blood. Compatibility testing may also be referred to as cross matching (CM). Immediate spin technique (ISCM) mixes recipient plasma or serum with donor red cells, centrifuges them immediately, and observes any hemolysis and/or agglutination. ISCM will not detect all ABO incompatibilities; however, a negative result indicates the blood of the donor and recipient are compatible and the unit may be transfused.
65% lower than market
Blood creatinine level
Blood creatinine level
A blood sample is taken to measure creatinine levels. Creatinine is a waste product produced by the muscles in the breakdown of creatine, which is a compound used by the muscles to create energy for contraction. The waste product, creatinine, is excreted by the kidneys and blood levels provide a good measurement of renal function. Creatinine may be checked to screen for or monitor treatment of renal disease. Creatinine levels may also be monitored in patients with acute or chronic illnesses that may impair renal function and in patients on medications that affect renal function. Creatinine is measured using spectrophotometry.
51% lower than market
Blood gases measurement
Blood gases measurement
62% lower than market
Blood glucose (sugar) level
Blood glucose (sugar) level
A blood sample is obtained to measure total (quantitative) blood glucose level. Glucose is a simple sugar that is the main source of energy for the body. Carbohydrates are broken down into simple sugars, primarily glucose, absorbed by the intestine, and circulated in the blood. Insulin, a hormone produced by the pancreas, regulates glucose level in the blood and transports glucose to cells in other tissues and organs. When more glucose is available in the blood than is required, it is converted to glycogen and stored in the liver or converted to fat and stored in adipose (fat) tissue. If the glucose/insulin metabolic process is working properly, blood glucose will remain at a fairly constant, healthy level. Glucose is measured to determine whether the glucose/insulin metabolic process is functioning properly. It is used to monitor glucose levels and determine whether they are too low (hypoglycemia) or too high (hyperglycemia) as well as test for diabetes and monitor blood sugar control in diabetics.
35% lower than market
Blood test, basic group of blood chemicals
Blood test, basic group of blood chemicals
A basic metabolic blood panel is obtained that includes ionized calcium levels along with carbon dioxide (bicarbonate) (CO2), chloride, creatinine, glucose, potassium, sodium, and urea nitrogen (BUN). A basic metabolic panel with measurement of ionized calcium may be used to screen for or monitor overall metabolic function or identify imbalances. Ionized or free calcium flows freely in the blood, is not attached to any proteins, and represents the amount of calcium available to support metabolic processes such as heart function, muscle contraction, nerve function, and blood clotting. Total carbon dioxide (bicarbonate) (CO2) level is composed of CO2, bicarbonate (HCO3-), and carbonic acid (H2CO3) with the primary constituent being bicarbonate, a negatively charged electrolyte that works in conjunction with other electrolytes, such as potassium, sodium, and chloride, to maintain proper acid-base balance and electrical neutrality at the cellular level. Chloride is also a negatively charged electrolyte that helps regulate body fluid and maintain proper acid-base balance. Creatinine is a waste product excreted by the kidneys that is produced in the muscles while breaking down creatine, a compound used by the muscles to create energy. Blood levels of creatinine provide a good measurement of renal function. Glucose is a simple sugar and the main source of energy for the body, regulated by insulin. When more glucose is available than is required, it is stored in the liver as glycogen or stored in adipose tissue as fat. Glucose measurement determines whether the glucose/insulin metabolic process is functioning properly. Both potassium and sodium are positively charged electrolytes that work in conjunction with other electrolytes to regulate body fluid, stimulate muscle contraction, and maintain proper acid-base balance and both are essential for maintaining normal metabolic processes. Urea is a waste product produced in the liver by the breakdown of protein from a sequence of chemical reactions referred to as the urea or Krebs-Henseleit cycle. Urea is taken up by the kidneys and excreted in the urine. Blood urea nitrogen, BUN, is a measure of renal function, and helps monitor renal disease and the effectiveness of dialysis.
71% lower than market
Blood test, clotting time
Blood test, clotting time
Prothrombin time (PT) measures how long it takes for blood to clot. Prothrombin, also called factor II, is one of the clotting factors made by the liver and adequate levels of vitamin K are needed for the liver to produce sufficient prothrombin. Prothrombin time is used to help identify the cause of abnormal bleeding or bruising; to check whether blood thinning medication, such as warfarin (Coumadin), is working; to check for low levels of blood clotting factors I, II, V, VII, and X; to check for low levels of vitamin K; to check liver function, to see how quickly the body is using up its clotting factors. The test is performed using electromagnetic mechanical clot detection. If prothrombin time is elevated and the patient is not on a blood thinning medication, a second prothrombin time using substitution plasma fractions, also referred to as a prothrombin time mixing study, may be performed. This is performed by mixing patient plasma with normal plasma using a 1:1 mix. The mixture is incubated and the clotting time is again measured. If the result does not correct, it may be indicative that the patient has an inhibitor, such as lupus anticoagulant. If the result does correct, the patient may have a coagulation factor deficiency.
57% lower than market
Blood test, comprehensive group of blood chemicals
Blood test, comprehensive group of blood chemicals
A comprehensive metabolic panel is obtained that includes albumin, bilirubin, total calcium, carbon dioxide, chloride, creatinine, glucose, alkaline phosphatase, potassium, total protein, sodium, alanine amino transferase (ALT) (SGPT), aspartate amino transferase (AST) (SGOT), and urea nitrogen (BUN). This test is used to evaluate electrolytes and fluid balance as well as liver and kidney function. It is also used to help rule out conditions such as diabetes. Tests related to electrolytes and fluid balance include: carbon dioxide, chloride, potassium, and sodium. Tests specific to liver function include: albumin, bilirubin, alkaline phosphatase, ALT, AST, and total protein. Tests specific to kidney function include: BUN and creatinine. Calcium is needed to support metabolic processes such as heart function, muscle contraction, nerve function, and blood clotting. Glucose is the main source of energy for the body and is regulated by insulin. Glucose measurement determines whether the glucose/insulin metabolic process is functioning properly.
63% lower than market
Blood test, lipids (cholesterol and triglycerides)
Blood test, lipids (cholesterol and triglycerides)
"A lipid panel is obtained to assess the risk for cardiovascular disease and to monitor appropriate treatment. Lipids are comprised of cholesterol, protein, and triglycerides. They are stored in cells and circulate in the blood. Lipids are important for cell health and as an energy source. A lipid panel should include a measurement of triglycerides and total serum cholesterol and then calculate to find the measurement of high density lipoprotein (HDL-C), low density lipoprotein (LDL-C) and very low density lipoprotein (VLDL-C). HDL contains the highest ratio of cholesterol and is often referred to as ""good cholesterol"" because it is capable of transporting excess cholesterol in the blood to the liver for removal. LDL contains the highest ratio of protein and is considered ""bad cholesterol"" because it transports and deposits cholesterol in the walls of blood vessels. VLDL contains the highest ratio of triglycerides and high levels are also considered ""bad"" because it converts to LDL after depositing triglyceride molecules in the walls of blood vessels. A blood sample is obtained by separately reportable venipuncture or finger stick. Serum/plasma is tested using quantitative enzymatic method."
16% lower than market
Blood test, thyroid stimulating hormone (TSH)
Blood test, thyroid stimulating hormone (TSH)
A blood test is performed to determine levels of thyroid stimulating hormone (TSH). TSH is produced in the pituitary and helps to regulate two other thyroid hormones, triiodothyronine (T3) and thyroxin (T4), which in turn help regulate the body's metabolic processes. TSH levels are tested to determine whether the thyroid is functioning properly. Patients with symptoms of weight gain, tiredness, dry skin, constipation, or menstrual irregularities may have an underactive thyroid (hypothyroidism). Patients with symptoms of weight loss, rapid heart rate, nervousness, diarrhea, feeling of being too hot, or menstrual irregularities may have an overactive thyroid (hypothyroidism). TSH levels are also periodically tested in individuals on thyroid medications. The test is performed by electrochemiluminescent immunoassay.
14% lower than market
Calcium level
Calcium level
A blood sample is taken to measure the amount of total calcium. Calcium is one of the most important minerals in the body. About 99 percent of the calcium found the body is stored in the bones. The remaining one percent circulates in the blood. Calcium may be ionized (free) or attached (bound) to proteins. Free calcium is the calcium metabolically active in the body. Bound calcium is inactive. Total calcium is a measurement of the total amount of both free calcium and bound calcium circulating in the blood. Total calcium is measured to screen for or monitor a number of conditions, including those affecting the bones, heart, nerves, kidneys and teeth. Total calcium is measured using spectrophotometry.
58% lower than market
Complete blood cell count - automated differential WBC count
Complete blood cell count - automated differential WBC count
An automated complete blood count (CBC) is performed with or without automated differential white blood cell (WBC) count. A CBC is used as a screening test to evaluate overall health and symptoms such as fatigue, bruising, bleeding, and inflammation, or to help diagnose infection. A CBC includes measurement of hemoglobin (Hgb) and hematocrit (Hct), red blood cell (RBC) count, white blood cell (WBC) count with or without differential, and platelet count. Hgb measures the amount of oxygen-carrying protein in the blood. Hct refers to the volume of red blood cells (erythrocytes) in a given volume of blood and is usually expressed as a percentage of total blood volume. RBC count is the number of red blood cells (erythrocytes) in a specific volume of blood. WBC count is the number of white blood cells (leukocytes) in a specific volume of blood. There are five types of WBCs: neutrophils, eosinophils, basophils, monocytes, and lymphocytes. If a differential is performed, each of the five types is counted separately. Platelet count is the number of platelets (thrombocytes) in the blood. Platelets are responsible for blood clotting. The CBC is performed with an automated blood cell counting instrument that can also be programmed to provide an automated WBC differential count.
56% lower than market
Complete blood cell count - automated test with out Differential
Complete blood cell count - automated test with out Differential
An automated complete blood count (CBC) is performed with or without automated differential white blood cell (WBC) count. A CBC is used as a screening test to evaluate overall health and symptoms such as fatigue, bruising, bleeding, and inflammation, or to help diagnose infection. A CBC includes measurement of hemoglobin (Hgb) and hematocrit (Hct), red blood cell (RBC) count, white blood cell (WBC) count with or without differential, and platelet count. Hgb measures the amount of oxygen-carrying protein in the blood. Hct refers to the volume of red blood cells (erythrocytes) in a given volume of blood and is usually expressed as a percentage of total blood volume. RBC count is the number of red blood cells (erythrocytes) in a specific volume of blood. WBC count is the number of white blood cells (leukocytes) in a specific volume of blood. There are five types of WBCs: neutrophils, eosinophils, basophils, monocytes, and lymphocytes. If a differential is performed, each of the five types is counted separately. Platelet count is the number of platelets (thrombocytes) in the blood. Platelets are responsible for blood clotting. The CBC is performed with an automated blood cell counting instrument that can also be programmed to provide an automated WBC differential count.
73% lower than market
Creatine kinase Level (cardiac enzyme) - Total
Creatine kinase Level (cardiac enzyme) - Total
Creatine kinase (CK) also known as, creatine phosphokinase (CPK), is an enzyme found in the heart, brain, skeletal muscle and certain other tissue. The subtypes are known as CK-MM found primarily in skeletal and heart muscle, CK-MB found in heart muscle and CK-BB located in the brain. CK circulating in blood rarely contains CK-BB but is largely comprised of CK-MM or CK-MB. Levels may be elevated following heart muscle damage (heart attack/myocardial infarction) and skeletal muscle injury (trauma, vigorous exercise). Statin drugs that lower cholesterol level and alcohol intake may cause elevated CK blood levels. A blood test is performed to measure total creatine kinase (CK) levels. A blood specimen is obtained by separately reportable venipuncture. Serum or plasma is tested using quantitative enzymatic methodology.
35% lower than market
Creatine kinase level (cardiac enzyme) - Muscle/Brain
Creatine kinase level (cardiac enzyme) - Muscle/Brain
Creatine kinase (CK) also known as, creatine phosphokinase (CPK), is an enzyme found in the heart, brain, skeletal muscle and certain other tissue. The subtypes are known as CK-MM found primarily in skeletal and heart muscle, CK-MB found in heart muscle and CK-BB located in the brain. CK circulating in blood rarely contains CK-BB but is largely comprised of CK-MM or CK-MB. Levels may be elevated following heart muscle damage (heart attack/myocardial infarction) and skeletal muscle injury (trauma, vigorous exercise). Statin drugs that lower cholesterol level and alcohol intake may cause elevated CK blood levels. Only creatine kinase (CK) MB fraction is measured. Testing for this isoenzyme can help identify heart muscle damage following a heart attack (myocardial infarction). A blood test is obtained by separately reportable venipuncture. Serum is tested using chemiluminescent immunoassay.
23% lower than market
Detection test for cryptosporidium (parasite); immunoassay technique
Detection test for cryptosporidium (parasite); immunoassay technique
79% lower than market
Detection test for giardia; immunoassay technique
Detection test for giardia; immunoassay technique
30% lower than market
Digoxin level
Digoxin level
A laboratory test is performed to measure digoxin levels. Digoxin, also known as Lanoxin, is a cardiac glycoside that controls sodium and potassium levels in the cells. Digoxin is primarily prescribed to treat atrial fibrillation, atrial flutter, and congestive heart failure. The drug increases the strength of cardiac muscle contractions which increases cardiac output and lowers the heart rate and venous pressure. Digoxin has a narrow therapeutic window but antidotal treatment is available (Digibind, Digoxin Immune FAB). The test for total digoxin measures Fab fragment-bound (inactive) digoxin and free (active) digoxin. This test is primarily used to monitor digoxin therapy and should be drawn 8-12 hours following an oral dose. The test for free digoxin (80163) may be used to evaluate breakthrough digoxin toxicity in patients with renal failure, access the need for additional antidigoxin Fab, determine when to reintroduce digoxin therapy, and monitor patients with possible digoxin-like immune reactive factors. To measure free digoxin, a blood sample is obtained by separately reportable venipuncture 6-8 hours after the last dose. Serum is tested for total digoxin using immunoassay and for free digoxin using ultrafiltration followed by electrochemiluminescent immunoassay.
31% lower than market
Ferritin (blood protein) level
Ferritin (blood protein) level
A blood test is performed to measure ferritin levels. Ferritin is an intracellular protein that stores iron and releases it into circulation in a controlled manner to protect the body against iron overload and iron deficiency. Ferritin levels may be obtained to evaluate for elevated levels caused by excess storage diseases such as hemochromatosis and following multiple transfusions. Levels may also be obtained to evaluate for decreased levels due to iron deficiency. A blood sample is obtained by separately reportable venipuncture. Serum is tested using quantitative chemiluminescent immunoassay.
1% lower than market
Flow cytometry, cell surface, cytoplasmic, or nuclear marker, technical component only; each additional marker
Flow cytometry, cell surface, cytoplasmic, or nuclear marker, technical component only; each additional marker
58% lower than market
Glutamyltransferase (liver enzyme) level
Glutamyltransferase (liver enzyme) level
A blood test is performed to measure gamma glutamyltransferase (GGT) levels. GGT is an enzyme that assists with the transfer of amino acids across cell membranes, including cells found in the liver, kidney, pancreas, heart, brain, and seminal vesicles. GGT levels are used as a diagnostic marker for certain diseases of the liver, bile ducts, and pancreas. A blood sample is obtained by separately reportable venipuncture. Serum or plasma is tested using quantitative enzymatic methodology.
65% lower than market
Hemoglobin A1C level
Hemoglobin A1C level
A blood test is performed to measure glycosylated hemoglobin (HbA1C) levels. Plasma glucose binds to hemoglobin and the HbA1C test measures the average plasma glucose concentration over the life of red blood cells (approximately 90-120 days). HbA1C levels may be used as a diagnostic reference for patients with suspected diabetes mellitus (DM) and to monitor blood glucose control in patients with known DM. HbA1C levels should be monitored at least every 6 months in patients with DM and more frequently when the level is >7.0%. A blood sample is obtained by separately reportable venipuncture. Whole blood is tested using quantitative high performance liquid chromatography/boronate affinity.
11% lower than market
Hemoglobin Measurement
Hemoglobin Measurement
A blood test is performed to determine hemoglobin (Hgb) which is a measurement of the amount of oxygen-carrying protein in the blood. Hgb is measured to determine the severity of anemia or polycythemia, monitor response to treatment for these conditions, or determine the need for blood transfusion. A blood sample is collected by separately reportable venipuncture or finger, heel, or ear stick. The sample may be sent to the lab or a rapid testing system may be used in the physician's office. Systems consist of a portable photometer and pipettes that contain reagent. The pipette is used to collect the blood sample from a capillary stick and the blood is automatically mixed with the reagent in the pipette. The photometer is then used to read the result which is displayed on the photometer device.
42% lower than market
Iron Binding Capacity
Iron Binding Capacity
A blood test is performed to measure the iron binding capacity of transferrin. Transferrin, a protein found in circulating blood is responsible for carrying iron molecules. This test measures the ability of transferrin to carry iron. A blood sample is obtained by separately reportable venipuncture. Serum or plasma is tested using quantitative spectrophotometry/calculation.
11% lower than market
Iron level
Iron level
A blood, urine or liver test is performed to measure iron levels. Iron (Fe) is an essential element that circulates in the blood attached to the protein transferrin. Iron is necessary component of hemoglobin, found in red blood cells (RBCs) and myoglobin found in muscle cells. Low iron levels may cause a decrease in red blood cells and iron deficiency anemia. High iron levels may be caused by excessive intake of iron supplements or a hereditary genetic condition such as hemochromatosis from a mutation of the RGMc gene or HAMP gene. A blood sample is obtained by separately reportable venipuncture. Serum or plasma is tested using quantitative spectrophotometry. A random voided or 24 hour urine specimen is obtained and tested using quantitative inductively coupled plasma/emission spectrometry. Patient should wait 2-4 days after receiving iodine or gadolinium contrast media to collect a urine specimen. A liver sample is obtained by a separately reportable procedure. Liver tissue is tested using quantitative inductively coupled plasma-mass spectrometry.
27% lower than market
Kidney Function Blood Test Panel
Kidney Function Blood Test Panel
A renal panel is obtained for routine health screening and to monitor conditions such as diabetes, renal disease, liver disease, nutritional disorders, thyroid and parathyroid function, and interventional drug therapies. Tests in a renal panel include glucose or blood sugar; electrolytes and minerals as sodium, potassium, chloride, total calcium, and phosphorus; the waste products blood urea nitrogen (BUN) and creatinine; a protein called albumin; and bicarbonate (carbon dioxide, CO2) responsible for acid base balance. Glucose is the main source of energy for the body and is regulated by insulin. High levels may indicate diabetes or impaired kidney function. Sodium is found primarily outside cells and maintains water balance in the tissues, as well as nerve and muscle function. Potassium is primarily found inside cells and affects heart rhythm, cell metabolism, and muscle function. Chloride moves freely in and out of cells to regulate fluid levels and help maintain electrical neutrality. Calcium is needed to support metabolic processes, heart and nerve function, muscle contraction, and blood clotting. Phosphorus is essential for energy production, nerve and muscle function, and bone growth. Blood urea nitrogen (BUN) and creatinine are waste products from tissue breakdown that circulate in the blood and are filtered out by the kidneys. Albumin, a protein made by the liver, helps to nourish tissue and transport hormones, vitamins, drugs, and calcium throughout the body. Bicarbonate (HCO3) may also be referred to as carbon dioxide (CO2) maintains body pH or the acid/base balance. A specimen is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative chemiluminescent immunoassay or quantitative enzyme-linked immunosorbent assay.
73% lower than market
Lactate dehydrogenase (enzyme) level
Lactate dehydrogenase (enzyme) level
A blood or body fluid test is performed to measure lactate dehydrogenase (LD) (LDH) levels. LDH is an enzyme present in red blood cells (RBCs) and in the tissue of heart, liver, pancreas, kidney, skeletal muscle, brain and lungs. LDH levels are used as a marker for tissue and RBC damage. Elevated blood levels can be caused by stroke, myocardial infarction, liver disease, pancreatitis, muscular dystrophy, infectious mononucleosis, hemolytic anemia and tumors/cancers such as lymphoma. Elevated cerebral spinal fluid (CSF) levels are usually indicative of bacterial meningitis. LDH levels in pleural and/or pericardial fluid can indicate if the effusion is an exudate, caused by an infection or a transudate caused by fluid pressure problem. A blood sample is obtained by separately reportable venipuncture. Cerebral spinal fluid is obtained by separately reportable lumbar puncture (spinal tap). Pericardial fluid is obtained by separately reportable pericardiocentesis. Fluid from a pleural effusion is obtained by separately reportable thoracentesis. Serum or plasma and all body fluids are tested using quantitative enzymatic methodology.
72% lower than market
Lactic acid level
Lactic acid level
A blood or body fluid test is performed to measure lactate (lactic acid) levels. Lactic acid is produced primarily by muscle tissue and red blood cells in the body. Elevated levels may be caused by strenuous exercise, heart failure, severe infection (sepsis), shock states (cardiogenic, hypovolemic) and liver disease. A blood sample is obtained by separately reportable venipuncture. Cerebral spinal fluid (CSF) is obtained by lumbar puncture (spinal tap). Other body fluids may also be collected and tested. Plasma, CSF, and other body fluids are tested using enzymatic methodology.
55% lower than market
Lipase (fat enzyme) level
Lipase (fat enzyme) level
A test is performed on blood and body fluids to measure lipase levels. Lipase is an enzyme released by the pancreas into the small intestine and is essential for the digestion of dietary fats. Elevated levels may result from small bowel obstruction, celiac disease, cholecystitis, duodenal ulcer, severe gastroenteritis, macrolipasemia, pancreatitis, and pancreatic tumors. The test may be ordered when there is a family history of lipoprotein lipase deficiency. A blood sample is obtained by separately reportable venipuncture. Other body fluids collected by other methods. Blood and other body fluids are tested using quantitative enzymatic methodology.
23% lower than market
Liver function blood test panel
Liver function blood test panel
A hepatic function panel is obtained to diagnose acute and chronic liver disease, inflammation, or scarring and to monitor hepatic function while taking certain medications. Tests in a hepatic function panel should include albumin (ALB), total and direct bilirubin, alkaline phosphatase (ALP), total protein (TP), alanine aminotransferase (ALT, SGPT), and aspartate aminotransferase (AST, SGOT). Albumin (ALB) is a protein made by the liver that helps to nourish tissue and transport hormones, vitamins, drugs, and calcium throughout the body. Bilirubin, a waste product from the breakdown of red blood cells, is removed by the liver in a conjugated state. Bilirubin is measured as total (all the bilirubin circulating in the blood) and direct (the conjugated amount only) to determine how well the liver is performing. Alkaline phosphatase (ALP) is an enzyme produced by the liver and other organs of the body. In the liver, cells along the bile duct produce ALP. Blockage of these ducts can cause elevated levels of ALP, whereas cirrhosis, cancer, and toxic drugs will decrease ALP levels. Circulating blood proteins include albumin (60% of total) and globulins (40% of total). By measuring total protein (TP) and albumin (ALB), the albumin/globulin (A/G) ratio can be determined and monitored. TP may decrease with malnutrition, congestive heart failure, hepatic disease, and renal disease and increase with inflammation and dehydration. Alanine aminotransferase (ALT, SGPT) is an enzyme produced primarily in the liver and kidneys. In healthy individuals ALT is normally low. ALT is released when the liver is damaged, especially with exposure to toxic substances such as drugs and alcohol. Aspartate aminotransferase (AST, SGOT) is an enzyme produced by the liver, heart, kidneys, and muscles. In healthy individuals AST is normally low. An AST/ALT ratio is often performed to determine if elevated levels are due to liver injury or damage to the heart or skeletal muscles. A specimen is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative enzymatic method or quantitative spectrophotometry.
69% lower than market
Magnesium Level
Magnesium Level
A blood, urine, or fecal test is performed to measure magnesium levels. Magnesium is an essential dietary mineral responsible for enzyme function, energy production, and contraction and relaxation of muscle fibers. Decreased levels may result from severe burns, metabolic disorders, certain medications, and low blood calcium levels. A blood sample is obtained by separately reportable venipuncture. Red blood cells (RBCs) are tested using quantitative inductively coupled plasma-mass spectrometry. Serum/plasma is tested using quantitative spectrophotometry. A 24-hour voided urine specimen is tested using quantitative spectrophotometry. A random or 24-hour fecal sample is tested using quantitative spectrophotometry.
53% lower than market
Manual urinalysis test with examination using microscope
Manual urinalysis test with examination using microscope
Complete Urine Test
32% lower than market
Measurement of Complement (Immune System Proteins)
Measurement of Complement (Immune System Proteins)
A blood test is performed to measure complement antigen levels. Complement factors help to clear immune complexes from the blood. Proteins are activated in response to the immune complex and generate peptides that bind the complexes and complement receptors. The cell membrane breaks apart and an attack complex is formed. A blood sample is obtained by separately reportable venipuncture. Complements are tested in serum or plasma samples, using specified methods, particularly quantitative radial immunodiffusion. Report for each complement component tested: 2-9 (2 being the most common inherited complement deficiency), 3A (the most abundant of all complement components), 4A, and 1Q; complement factor B and Bb; and C1-esterase inhibitor.
7% lower than market
Natriuretic peptide (heart and blood vessel protein) level
Natriuretic peptide (heart and blood vessel protein) level
The level of the natriuretic peptide in the blood is measured to evaluate heart failure and to differentiate symptoms that might be indicative of heart failure from other disorders that cause similar symptoms. A separately reportable venipuncture is performed and whole blood or plasma collected using EDTA as an anticoagulant. An automated immunoassay is performed using murine monoclonal and polyclonal antibodies against natriuretic peptide. The antibodies are labeled with a fluorescent dye and immobilized on the solid phase. The specimen is placed in the sample chamber and the analysis is run. The physician reviews the results and uses them to make diagnosis and treatment decisions.
26% lower than market
PSA (prostate specific antigen) measurement
PSA (prostate specific antigen) measurement
Prostate specific antigen (PSA) is measured. PSA is a protein produced by normal prostate cells found in serum and exists in both free form and complexed with other proteins. Total PSA is measured ad the total amount of both free and complexed forms. Total PSA levels are higher in men with benign prostatic hyperplasia (BPH), acute bacterial prostatitis, or prostate cancer. Total PSA is used to screen for prostate cancer and evaluate the response to treatment in those with prostate cancer, but cannot be used by itself to definitively diagnose prostate cancer.
1% higher than market
PSA Measurement; Free
PSA Measurement; Free
Prostate specific antigen (PSA) is measured. PSA is a protein produced by normal prostate cells found in serum and exists in both free form and complexed with other proteins. In 84154, free PSA is measured, often in conjunction with total PSA, to provide an indirect measurement of complexed PSA.
69% lower than market
Coagulation assessment blood test
Coagulation assessment blood test
This test may also be referred to as an activated PTT or aPTT. PTT may be performed to diagnose the cause of bleeding or as a screening test prior to surgery to rule-out coagulation defects. A silica and synthetic phospholipid PTT reagent is mixed with the patient plasma. The silica provides a negatively-charged particulate surface that activates the contact pathway for coagulation. Clot formation is initiated by adding calcium chloride to the mixture. Clotting time is measured photo-optically.
50% lower than market
Phenytoin level
Phenytoin level
A blood test is performed to measure phenytoin total and phenytoin free levels. Phenytoin also known as Dilantin, Phenytek or Prompt, is an anticonvulsant prescribed to treat seizures and works by deceasing electrical activity in the brain. The drug may be administered orally or by injection. Phenytoin has a narrow therapeutic range and the patient should be monitored for both total and free phenytoin levels. Total phenytoin reflects the total serum concentration of the drug while free phenytoin levels reflect the unbound levels. Only the unbound levels are biologically active. Ninety (90) percent of the drug is typically highly bound and biologically inactive, but bound phenytoin is sensitive to displacement by other protein binding drugs which can elevate levels of free phenytoin in the blood. Blood concentration levels are monitored at regular intervals and also when breakthrough seizures occur, indicating possible low therapeutic levels. A blood sample is obtained by a separately reportable venipuncture. Blood serum is then tested using immunoassay.
55% lower than market
Phosphate level
Phosphate level
A blood or urine test is performed to measure inorganic phosphorus (phosphate) levels. Phosphate is an intracellular anion, found primarily in bone and soft tissue. It plays an important role in cellular energy (nerve and muscle function) and the building/repair of bone and teeth. Decreased levels are most often caused by malnutrition and lead to muscle and neurological dysfunction. Elevated levels may be due to kidney or parathyroid gland problems. A blood sample is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative spectrophotometry.
52% lower than market
Prostate Cancer Screening Test
Prostate Cancer Screening Test
Prostate cancer screening; prostate specific antigen test (psa)
7% lower than market
Red blood cell sedimentation rate, to detect inflammation
Red blood cell sedimentation rate, to detect inflammation
49% lower than market
Red blood count, automated test
Red blood count, automated test
An automated reticulocyte count is performed. Reticulocytes are new red blood cells (RBCs) that circulate in the peripheral blood for 1-2 days before losing sufficient RNA to become mature RBCs. A reticulocyte count may be performed when a blood test shows decreased RBCs and/or decreased hemoglobin or hematocrit measurements. The test can help determine if the bone marrow is responding to the body's need for RBCs. Indications for monitoring reticulocytes include vitamin B12 or folate deficiency, kidney disease, chemotherapy, bone marrow transplant, and treatment with erythropoietin or darbepoetin. A blood sample is obtained. A reticulocyte count is performed with an automated blood cell counting instrument. Automated reticulocyte count performed alone is reported. When automated reticulocyte count is performed with direct measurement of one or more cellular parameters, such as reticulocyte hemoglobin content (CHr), immature reticulocyte fraction (IRF), mean reticulocyte volume (MRV), or RNA content is reported. CHr measures the amount of hemoglobin in reticulocytes, which is an indicator of iron utilization for RBC production, and is used to diagnosis iron deficiency. IRF is used to determine whether reticulocytes are being released prematurely and to quantify the proportion of immature reticulocytes. Premature release occurs during periods of high demand for RBCs in chronic kidney disease, following chemotherapy or bone marrow transplant, or in patients with AIDs or malignant disease, as well as other conditions. IRF is calculated as a ratio of immature reticulocytes to the total number of reticulocytes (both immature and mature). MRV looks at the total volume of reticulocytes compared to total red blood cells and is used to evaluate iron utilization. RNA content is evaluated to determine the maturity of circulating reticulocytes.
64% lower than market
Screening Test for Red Blood Cell Antibodies
Screening Test for Red Blood Cell Antibodies
A blood sample is tested for antibodies directed against red blood cell (RBC) antigens other than A and B antigens. This test may also be referred to as an indirect antiglobulin test (IAT). This test is performed as part of a blood typing and screening test when it is anticipated that a blood transfusion might be required. If an antibody is detected, then separately reportable antibody identification is performed to identify the specific antibodies present. The test may be performed using IAT methodology or another serum technique such as solid phase. If multiple serum techniques are used, each reported separately.
53% lower than market
Screening test for Pathogenic Organisms
Screening test for Pathogenic Organisms
This test is performed when a specific pathogen is suspected. A blood sample is taken and placed in a medium conducive to the growth of the suspected pathogen. Any colonies that grow in the medium are then examined.
67% lower than market
Special Stain for Microorganism; Gram or Glemsa Stain
Special Stain for Microorganism; Gram or Glemsa Stain
A laboratory test is performed to identify bacteria, fungi, or cell types in pus, normally sterile body fluid(s), or aspirated material using Gram or Giemsa stain technique. Gram staining is a differential technique used to classify bacteria into gram positive (Gram +) or gram negative (Gram -) groups. Gram + bacteria have a thick layer of peptidoglycan in the cell wall which stains purple. Giemsa technique is used in cytogenetics for chromosome staining; in histopathology to detect trichomonas, some spirochetes, protozoans, malaria, and other parasites; and as a stain for peripheral blood and bone marrow to differentiate cells types such as erythrocytes, platelets, lymphocyte cytoplasm, monocyte cytoplasm, and leukocyte nuclear chromatin. A drop of suspended culture or cell material is applied in a thin layer to a slide using an inoculation hook and fixed with heat. The material is stained and the slide is examined under a microscope. The bacteria, fungi, or cells are identified, counted, and a written report of the findings is made.
46% lower than market
Special stained specimen slides to identify organisms including interpretation and report
Special stained specimen slides to identify organisms including interpretation and report
23% lower than market
Stool Analysis for Blood
Stool Analysis for Blood
A fecal (stool) sample is obtained for colorectal neoplasm screening and tested for the presence of occult (hidden) blood by peroxidase activity. This test is also referred to as a fecal occult blood test (FOBT). Occult blood in a stool specimen is present in amounts too small to see with the naked eye, but becomes visible when chemical tests are performed. Guaiac is one type of chemical (reagent) test that can be performed to identify the presence of blood in the stool. If the test is performed in an office or hospital, the physician may obtain the sample during a rectal exam. If the test is performed at home, the patient is provided with a stool collection kit consisting of three cards or a single triple card. The patient obtains three consecutive stool specimens per the kit instructions. The stool specimens are then returned to the physician office or mailed to a laboratory. All three specimens are then tested using a chemical reagent for the presence of occult blood. A few drops of the chemical reagent are applied to each stool specimen. If blood is present, a color change will be detected on the card.
38% lower than market
Stool culture - salmonella and shigella species
Stool culture - salmonella and shigella species
A stool sample is collected and placed in a medium conducive to the growth of bacteria. The culture is examined for the growth of Salmonella and Shigella bacteria.
67% lower than market
Stool analysis for blood to screen for colon tumors
Stool analysis for blood to screen for colon tumors
Lab test for Fecal Blood
39% lower than market
Strep Test
Strep Test
A direct optical test to detect Streptococcus Group A (Strep A) by immunoassay is a rapid, qualitative test performed using lateral flow immunoassay. Strep A causes acute upper respiratory infection with the most common symptoms being pharyngitis (sore throat) and fever. If left untreated serious complications can occur including rheumatic fever and glomerulonephritis. This type of test is a rapid, qualitative test performed using lateral flow immunoassay. A throat swab is obtained. Two reagents are added to extract Strep A antigen from the specimen. A dipstick is added to the extracted sample. If Strep A antigen is present the test line and a control line will change color indicating a positive test. Another method uses a throat swab specimen inserted into a test cassette. Antigen extraction solutions are then mixed in a separate chamber of the tube and added to the swab chamber. If Strep A is present, a test line will change color as will a second control line.
38% lower than market
Test for Influenza Virus
Test for Influenza Virus
A quick test to detect influenza (Type A or B) by immunoassay with direct optical observation is performed. It is a rapid, qualitative test performed using lateral flow immunoassay. Influenza is an acute, highly contagious, viral upper respiratory infection. There are three types of influenza viruses delineated as Type A, B, or C with Type A being the most severe and prevalent type. Type B is generally less severe. Type C is the least common and is not associated with large human epidemics. Type A and B can both be detected by a rapid test. A nasal or nasopharyngeal swab is obtained. Alternatively nasal wash or aspirate may be used. The specimen is placed in a tube containting an extraction reagent that disrupts the virus particles in the specimen and exposes viral nucleoproteins. A test strip is then inserted into the tube. If the influenza virus being tested (Type A or B) is present, a line on the test strip will change color along with a control line.
59% lower than market
Thyroxine (thyroid chemical) measurement - Total
Thyroxine (thyroid chemical) measurement - Total
A blood sample is obtained and levels of total thyroxin (84436), thyroxine requiring elution as for testing in neonates (84437), or free thyroxine (84439) are evaluated. Thyroxine, also referred to as T4, is tested to determine whether the thyroid is functioning properly and is used to aid in the diagnosis of overactive (hyperthyroidism) or underactive (hypothyroidism) thyroid function. In 84436, total thyroxine levels are evaluated. Total thyroxine measures the total amount of both bound and unbound (free) thyroxine in the blood. All thyroxine tests use electrochemiluminescent immunoassay methodology. *
51% lower than market
Total Protein Level, Urine
Total Protein Level, Urine
A urine test is performed to measure total protein levels. Protein is not normally found in urine and usually indicates damage or disease in the kidneys. Elevated levels are often present in patients with diabetes, hypertension, and multiple myeloma. A 24-hour or random urine sample is obtained and tested using quantitative spectrophotometry.
8% lower than market
Troponin (protein) analysis
Troponin (protein) analysis
A blood test is performed to measure troponin levels. Troponins are regulatory proteins that facilitate contraction of skeletal and smooth muscle by forming calcium bonds. Troponin T binds to tropomyosin to form a complex. Troponin I binds to actin and holds the Troponin T-tropomyosin complex together. Elevation of troponins, coupled with cardiac symptoms such as chest pain are considered diagnostic for cardiac injury. This test is commonly ordered in the Emergency Department when a patient presents with possible myocardial infarction, and is then repeated at 6 hour intervals. It may be ordered with other tests that assess cardiac biomarkers such as CK, CK-MB, and myoglobin. A blood sample is obtained by separately reportable venipuncture. Serum/plasma is tested for Troponin T using quantitative electrochemiluminescent immunoassay. Serum is tested for Troponin I using chemiluminescent immunoassay.
23% lower than market
Urea nitrogen level to assess kidney function
Urea nitrogen level to assess kidney function
A blood sample is obtained to measure total (quantitative) urea nitrogen (BUN) level. Urea is a waste product produced in the liver by the breakdown of protein from a sequence of chemical reactions referred to as the urea or Krebs-Henseleit cycle. Urea then enters the bloodstream, is taken up by the kidneys and excreted in the urine. Blood BUN is measured to evaluate renal function, to monitor patients with renal disease, and to evaluate effectiveness of dialysis. BUN may also be measured in patients with acute or chronic illnesses that affect renal function. BUN is measured using spectrophotometry.
51% lower than market
Uric acid level, blood
Uric acid level, blood
A blood test is performed to measure uric acid levels. Uric acid forms from the natural breakdown of body cells and the food we ingest. Uric acid is normally filtered by the kidneys and excreted in urine. Elevated blood levels may result from kidney disease, certain cancers and/or cancer therapies, hemolytic or sickle cell anemia, heart failure, cirrhosis, lead poisoning, and low levels of thyroid or parathyroid hormones. Levels may be decreased in Wilson's disease, poor dietary intake of protein, and with the use of certain drugs. A blood sample is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative spectrophotometry.
55% lower than market
Urinalysis with Examination, using Microscope
Urinalysis with Examination, using Microscope
A urinalysis is performed by dip stick or tablet reagent for bilirubin, glucose, hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific gravity, and/or urobilinogen. Urinalysis can quickly screen for conditions that do not immediately produce symptoms such as diabetes mellitus, kidney disease, or urinary tract infection. A dip stick allows qualitative and semi-quantitative analysis using a paper or plastic stick with color strips for each agent being tested. The stick is dipped in the urine specimen and the color strips are then compared to a color chart to determine the presence or absence and/or a rough estimate of the concentration of each agent tested. Reagent tablets use an absorbent mat with a few drops of urine placed on the mat followed by a reagent tablet. A drop of distilled, deionized water is then placed on the tablet and the color change is observed. Bilirubin is a byproduct of the breakdown of red blood cells by the liver. Normally bilirubin is excreted through the bowel, but in patients with liver disease, bilirubin is filtered by the kidneys and excreted in the urine. Glucose is a sugar that is normally filtered by the glomerulus and excreted only in small quantities in the urine. Excess sugar in the urine (glycosuria) is indicative of diabetes mellitus. The peroxidase activity of erythrocytes is used to detect hemoglobin in the urine which may be indicative of hematuria, myoglobinuria, or hemoglobinuria. Ketones in the urine are the result of diabetic ketoacidosis or calorie deprivation (starvation). A leukocyte esterase test identifies the presence of white blood cells in the urine. The presence of nitrites in the urine is indicative of bacteria. The pH identifies the acid-base levels in the urine. The presence of excessive amounts of protein (proteinuria) may be indicative of nephrotic syndrome. Specific gravity measures urine density and is indicative of the kidneys' ability to concentrate and dilute urine. Following dip stick or reagent testing, the urine sample may be examined under a microscope. The urine sample is placed in a test tube and centrifuged. The sediment is resuspended. A drop of the resuspended sediment is then placed on a glass slide, cover-slipped, and examined under a microscope for crystals, casts, squamous cells, blood (white, red) cells, and bacteria.
72% lower than market
Urinalysis, Automated Test
Urinalysis, Automated Test
A urinalysis is performed by dip stick or tablet reagent for bilirubin, glucose, hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific gravity, and/or urobilinogen. Urinalysis can quickly screen for conditions that do not immediately produce symptoms such as diabetes mellitus, kidney disease, or urinary tract infection. A dip stick allows qualitative and semi-quantitative analysis using a paper or plastic stick with color strips for each agent being tested. The stick is dipped in the urine specimen and the color strips are then compared to a color chart to determine the presence or absence and/or a rough estimate of the concentration of each agent tested. Reagent tablets use an absorbent mat with a few drops of urine placed on the mat followed by a reagent tablet. A drop of distilled, deionized water is then placed on the tablet and the color change is observed. Bilirubin is a byproduct of the breakdown of red blood cells by the liver. Normally bilirubin is excreted through the bowel, but in patients with liver disease, bilirubin is filtered by the kidneys and excreted in the urine. Glucose is a sugar that is normally filtered by the glomerulus and excreted only in small quantities in the urine. Excess sugar in the urine (glycosuria) is indicative of diabetes mellitus. The peroxidase activity of erythrocytes is used to detect hemoglobin in the urine which may be indicative of hematuria, myoglobinuria, or hemoglobinuria. Ketones in the urine are the result of diabetic ketoacidosis or calorie deprivation (starvation). A leukocyte esterase test identifies the presence of white blood cells in the urine. The presence of nitrites in the urine is indicative of bacteria. The pH identifies the acid-base levels in the urine. The presence of excessive amounts of protein (proteinuria) may be indicative of nephrotic syndrome. Specific gravity measures urine density and is indicative of the kidneys' ability to concentrate and dilute urine. Following dip stick or reagent testing, the urine sample may be examined under a microscope. The urine sample is placed in a test tube and centrifuged. The sediment is resuspended. A drop of the resuspended sediment is then placed on a glass slide, cover-slipped, and examined under a microscope for crystals, casts, squamous cells, blood (white, red) cells, and bacteria.
53% lower than market
Urinalysis, Manual Test
Urinalysis, Manual Test
A urinalysis is performed by dip stick or tablet reagent for bilirubin, glucose, hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific gravity, and/or urobilinogen. Urinalysis can quickly screen for conditions that do not immediately produce symptoms such as diabetes mellitus, kidney disease, or urinary tract infection. A dip stick allows qualitative and semi-quantitative analysis using a paper or plastic stick with color strips for each agent being tested. The stick is dipped in the urine specimen and the color strips are then compared to a color chart to determine the presence or absence and/or a rough estimate of the concentration of each agent tested. Reagent tablets use an absorbent mat with a few drops of urine placed on the mat followed by a reagent tablet. A drop of distilled, deionized water is then placed on the tablet and the color change is observed. Bilirubin is a byproduct of the breakdown of red blood cells by the liver. Normally bilirubin is excreted through the bowel, but in patients with liver disease, bilirubin is filtered by the kidneys and excreted in the urine. Glucose is a sugar that is normally filtered by the glomerulus and excreted only in small quantities in the urine. Excess sugar in the urine (glycosuria) is indicative of diabetes mellitus. The peroxidase activity of erythrocytes is used to detect hemoglobin in the urine which may be indicative of hematuria, myoglobinuria, or hemoglobinuria. Ketones in the urine are the result of diabetic ketoacidosis or calorie deprivation (starvation). A leukocyte esterase test identifies the presence of white blood cells in the urine. The presence of nitrites in the urine is indicative of bacteria. The pH identifies the acid-base levels in the urine. The presence of excessive amounts of protein (proteinuria) may be indicative of nephrotic syndrome. Specific gravity measures urine density and is indicative of the kidneys' ability to concentrate and dilute urine. Following dip stick or reagent testing, the urine sample may be examined under a microscope. The urine sample is placed in a test tube and centrifuged. The sediment is resuspended. A drop of the resuspended sediment is then placed on a glass slide, cover-slipped, and examined under a microscope for crystals, casts, squamous cells, blood (white, red) cells, and bacteria.
106% higher than market
Urine Volume Measurement
Urine Volume Measurement
A procedure is performed to collect urine and measure volume over a specific period of time. The volumetric measurement of urine may be required to report certain biomarkers and variations in the concentration over a specific length of time. The timed collection begins by discarding the first sample of urine and noting the time. All subsequent urine is then collected and pooled in the collection container for the designated period of time. When the last sample is collected, the end time is noted and the collected specimen is sent to the laboratory for processing and analysis.
27% lower than market
Urine chloride level
Urine chloride level
43% lower than market
Urine microalbumin (protein) level
Urine microalbumin (protein) level
A test on urine is used to measure microalbumin levels and is routinely performed annually on diabetic patients with stable blood glucose levels to assess for early onset nephropathy. The quantitative test, which measures the actual amount of microalbumin present in the urine, may be performed on a random urine sample, with a notation of total volume and voiding time, or a 24-hour urine sample using immunoturbidimetric technique. The semi-quantitative test identifies the presence of elevated microalbumin levels in the urine within a general range and involves a chemical dipstick placed into the urine sample which reacts and changes color when albumin is present.
6% higher than market
Urine potassium level
Urine potassium level
A urine test is performed to measure potassium levels. Potassium is a chemical element essential for proper functioning of the heart, kidneys, intestine, muscles, and nerves. Levels may be elevated in kidney disease, Cushing's syndrome, hyperaldosteronism, eating disorders, diabetic/metabolic acidosis, hypomagnesemia, and with the use of certain diuretics. Decreased levels may be caused by adrenal gland insufficiency, hypoaldosteronism, and medications such as beta blockers, lithium, and NSAIDs. A 24-hour or random urine sample is obtained. Urine is tested using quantitative ion-selective electrode.
30% lower than market
Urine sodium level
Urine sodium level
A urine sample is obtained to measure sodium level. Sodium is a positively charged electrolyte that works in conjunction with other electrolytes, such as potassium, chloride, and carbon dioxide (CO2), to regulate fluid in the body and maintain proper acid-base balance. Sodium is an essential mineral in the body, necessary for maintaining normal metabolic processes, fluid levels, and vascular pressure. Sodium level is used to screen for and monitor elevated blood sodium (hypernatremia), low blood sodium (hyponatremia), and electrolyte imbalances. Sodium may be monitored in patients on certain medications, such as diuretics, that can cause electrolyte imbalance. Sodium is measured by ion-selective electrode (ISE) methodology.
38% lower than market
Valproic acid level
Valproic acid level
A laboratory test is performed to measure valproic acid (dipropylacetic acid, depakote). Valproic acid is an anticonvulsant that may be used to treat seizure disorders, manic phase of bipolar disorders, and migraine headaches. The drug works by changing certain chemicals neurotransmitters in the brain. The test for total valproic acid can be used to monitor drug therapy, assess patient compliance, and evaluate for potential toxicity. The test for free valproic acid may be used to evaluate the cause of toxicity when the total valproic acid concentration is within the normal range. Free valproic acid may be elevated in patients with an altered or unpredictable protein binding capacity. A blood sample is obtained by separately reportable venipuncture just prior to medication administration to obtain the trough level. Serum/plasma is tested for total valproic acid using fluorescence polarization immunoassay and for free valproic acid using quantitative enzyme multiplied immunoassay.
3% higher than market
Vancomycin (antibiotic) level
Vancomycin (antibiotic) level
A blood test is performed to measure vancomycin levels at random, peak and trough times. Vancomycin, also known as Vancocin is a glycopeptide antibiotic prescribed to treat severe or serious bacterial infections. For systemic infections it is administered by intravenous infusion. For intestinal infections such as colitis or clostridium difficile it is taken orally. Blood level monitoring is necessary because the drug has the potential to cause auditory toxicity. A random sample may be drawn any time, peak and trough levels are time dependant and are usually drawn 24 hours after initiating therapy and every 2-3 days thereafter. A trough level is drawn 10 minutes prior to intravenous infusion. A peak level is drawn 1-2 hours after intravenous infusion is complete. A blood sample is obtained by separately reportable venipuncture. Blood serum is then tested using fluorescence polarization immunoassay.
23% lower than market
Vitamin D-3 Level
Vitamin D-3 Level
Blood levels of 25-hydroxyvitamin D are used to primarily to determine whether a deficiency of Vitamin D or abnormal metabolism of calcium is the cause of bone weakness or malformation. Vitamin D is a fat soluble vitamin that is absorbed from the intestine like fat, and 25-hydroxyvitamin D levels are also evaluated in individuals with conditions or diseases that interfere with fat absorption, such as cystic fibrosis, Crohn's disease, or in patients who have undergone gastric bypass surgery. A blood sample is obtained. Levels of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 are evaluated using chemiluminescent immunoassay. The test results may be the sum of Vitamin D3 and D2 or the results may include fractions of D3 and D2 as well as the sum of these values.
2% higher than market
White blood cell measure, stool specimen
White blood cell measure, stool specimen
65% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT MEDICINE CHARGES
OUTPATIENT MEDICINE CHARGES
Description
Variance
Fluoroscopic and video recorded motion evaluation of swallowing function
Fluoroscopic and video recorded motion evaluation of swallowing function
72% lower than market
Hydration Infusion into a Vein
Hydration Infusion into a Vein
An intravenous infusion is administered for hydration. An intravenous line is placed into a vein, usually in the arm, and fluid is administered to provide additional fluid levels and electrolytes to counteract the effects of dehydration or supplement deficient oral fluid intake. The physician provides direct supervision of the fluid administration and is immediately available to intervene should complications arise. The physician provides periodic assessments of the patient and documentation of the patient's response to treatment. Use 96360 for the initial 31 minutes to one hour of hydration. Use 96361 for each additional hour.
45% lower than market
Hydration Infusion into a Vein - 31 Minutes to 1 Hour
Hydration Infusion into a Vein - 31 Minutes to 1 Hour
An intravenous infusion is administered for hydration. An intravenous line is placed into a vein, usually in the arm, and fluid is administered to provide additional fluid levels and electrolytes to counteract the effects of dehydration or supplement deficient oral fluid intake. The physician provides direct supervision of the fluid administration and is immediately available to intervene should complications arise. The physician provides periodic assessments of the patient and documentation of the patient's response to treatment.
39% lower than market
Infusion into a Vein for Therapy, Diagnosis, or Prevention
Infusion into a Vein for Therapy, Diagnosis, or Prevention
Intravenous infusion, for therapy, prophylaxis, or diagnosis (specify substance or drug); each additional hour (List separately in addition to code for primary procedure)
39% lower than market
Infusion of Drug or Substance into Vein for Therapy or Diagnosis
Infusion of Drug or Substance into Vein for Therapy or Diagnosis
An intravenous infusion of a specified substance or drug is administered for therapy, prophylaxis, or diagnosis. An intravenous line is placed into a vein, usually in the arm, and the specified substance or drug is administered. The physician provides direct supervision of the administration and is immediately available to intervene should complications arise. The physician provides periodic assessments of the patient and documentation of the patient's response to treatment.
16% lower than market
Infusion of chemotherapy into a vein
Infusion of chemotherapy into a vein
71% lower than market
Injection Beneath the Skin for Therapy, Diagnosis, or Prevention
Injection Beneath the Skin for Therapy, Diagnosis, or Prevention
A subcutaneous or intramuscular injection of a therapeutic, prophylactic, or diagnostic substance or drug is given. A subcutaneous injection is administered just under the skin in the fatty tissue of the abdomen, upper arm, upper leg, or buttocks. The skin is cleansed. A two-inch fold of skin is pinched between the thumb and forefinger. The needle is inserted completely under the skin at a 45 to 90 degree angle using a quick, sharp thrust. The plunger is retracted to check for blood. If blood is present, a new site is selected. If no blood is present, the medication is injected slowly into the tissue. The needle is withdrawn and mild pressure is applied. An intramuscular injection is administered in a similar fashion deep into muscle tissue, differing only in the sites of administration and the angle of needle insertion. Common sites include the gluteal muscles of the buttocks, the vastus lateralis muscle of the thigh, or the deltoid muscle of the upper arm. The angle of insertion is 90 degrees. Intramuscular administration provides rapid systemic absorption and can be used for administration of relatively large doses of medication.
38% lower than market
Injection of Same Drug into Vein for Therapy or Diagnosis
Injection of Same Drug into Vein for Therapy or Diagnosis
A therapeutic, prophylactic, or diagnostic injection is administered by intravenous push (IVP) technique. The specified substance or drug is injected using a syringe directly into an injection site of an existing intravenous line or intermittent infusion set (saline lock). The injection is given over a short period of time, usually less than 15 minutes.
72% lower than market
Irrigation of implanted venous access drug delivery device
Irrigation of implanted venous access drug delivery device
20% lower than market
Sleep Monitoring with CPAP
Sleep Monitoring with CPAP
Polysomnography is performed with sleep staging by a sleep technologist. Sleep studies are performed to evaluate and diagnose a variety of sleep disorders including sleep apnea, narcolepsy, insomnia, sleep walking, restless leg syndrome, and other periodic movements during sleep. The patient presents to the sleep study center in the evening. Sleep staging is accomplished using electroencephalography (EEG), electro-oculogram (EOG), and electromyogram (EMG). EEG is performed using one to four electrodes attached to the scalp. Electrodes are attached around the eyes and an EOG performed to monitor eye movement. A submental EMG is performed by placing an electrode under the chin to record muscle tone. One or more additional parameters of sleep are recorded and analyzed including: heart rate and rhythm; airflow; ventilation and respiratory effort; gas exchange by oximetry, transcutaneous monitoring, or end tidal gas analysis; extremity muscle activity or motor activity-movement; extended EEG monitoring; penile tumescence; gastroesophageal reflux; continuous blood pressure monitoring; snoring; and/or body position. The room is darkened and brain activity, eye and muscle movement are recorded. Other parameters of sleep are monitored and recorded as needed. The physician analyzes the recorded data obtained during the polysomnography and provides a written interpretation of the test results. If CPAP is performed a nasal mask is applied to the nose to keep the airway open during inhalation. If bi-level ventilation is performed, a ventilator is used to augment respiration while still allowing spontaneous unassisted respiration.
32% lower than market
Sleep monitoring of patient (6 years or older) in sleep lab
Sleep monitoring of patient (6 years or older) in sleep lab
25% lower than market
Therapeutic procedures in a group setting
Therapeutic procedures in a group setting
67% lower than market
Vaccine for influenza for injection into muscle; preservative free, enhanced immunogenicity via increased antigen content
Vaccine for influenza for injection into muscle; preservative free, enhanced immunogenicity via increased antigen content
High dose flu shot preservative free
14% lower than market
Water pool therapy with therapeutic exercises to 1 or more areas, each 15 minutes
Water pool therapy with therapeutic exercises to 1 or more areas, each 15 minutes
25% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT PHARMACY AND DRUG ADMINISTRATION CHARGES
OUTPATIENT PHARMACY AND DRUG ADMINISTRATION CHARGES
Description
Variance
Administration of 1 Vaccine
Administration of 1 Vaccine
A single vaccine or a combination vaccine/toxoid is administered by injection to a patient over age 18 with or without a face-to-face encounter with the physician or other health care professional. These codes are also used when a vaccine/toxoid is given to a patient age 18 or younger without any face-to-face counseling by the physician or other health care professional. Routes of administration include percutaneous, intradermal, subcutaneous, or intramuscular.
69% lower than market
Administration of Influenza Virus Vaccine
Administration of Influenza Virus Vaccine
Administration of influenza virus vaccine
62% lower than market
Chemotherapy Infustion - Up to 1 Hour
Chemotherapy Infustion - Up to 1 Hour
An intravenous infusion of a chemotherapy substance or drug is administered for treatment of a malignant neoplasm. An intravenous line is placed into a vein, usually in the arm, and the specified chemotherapy agent is administered. The physician provides direct supervision of the administration of the chemotherapy agent and is immediately available to intervene should complications arise. The physician provides periodic assessments of the patient and documentation of the patient's response to treatment.
16% lower than market
Injection of Drug or Substance into Vein for Therapy or Diagnosis
Injection of Drug or Substance into Vein for Therapy or Diagnosis
A therapeutic, prophylactic, or diagnostic injection is administered by intravenous push (IVP) technique. The specified substance or drug is injected using a syringe directly into an injection site of an existing intravenous line or intermittent infusion set (saline lock). The injection is given over a short period of time, usually less than 15 minutes.
22% lower than market
Injection of New Drug into Vein for Therapy or Diagnosis
Injection of New Drug into Vein for Therapy or Diagnosis
A therapeutic, prophylactic, or diagnostic injection is administered by intravenous push (IVP) technique. The specified substance or drug is injected using a syringe directly into an injection site of an existing intravenous line or intermittent infusion set (saline lock). The injection is given over a short period of time, usually less than 15 minutes.
39% lower than market
Injection, Ketorolac Tromethamine, per 15 mg
Injection, Ketorolac Tromethamine, per 15 mg
Injection, ketorolac tromethamine, per 15 mg
19% lower than market
Injection, ertapenem sodium, 500 mg
Injection, ertapenem sodium, 500 mg
25% lower than market
Injection, insulin, per 5 units
Injection, insulin, per 5 units
73% lower than market
Injection, pantoprazole sodium, per vial
Injection, pantoprazole sodium, per vial
34% lower than market
Injection, propofol, 10 mg
Injection, propofol, 10 mg
77% lower than market
Tetanus Vaccine
Tetanus Vaccine
Toxoids provide long lasting immunity by stimulating the body's own defense system to make antibodies that destroy specific toxins produced by bacteria. Vaccines also provide active, long-term immunity by exposing the recipient's immune system to altered versions of specific viruses or bacteria that induce the immune system to produce its own antibodies against the invading micro-organism. The body then remembers how to make antibodies when exposed to these same agents again. The toxoid vaccine is an inactivated poison, called a toxin, produced by culturing the bacteria in a liquid medium, then purifying and inactivating the poison produced by the bacteria. Since toxoids are not a live vaccine, booster doses are recommended because immunity will decline over time. These tetanus toxoid combinations are formulations for adults and those over 7 years of age, given by intramuscular injection.
61% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT RESPIRATORY THERAPY CHARGES
OUTPATIENT RESPIRATORY THERAPY CHARGES
The following charges reflect the most common services offered by our Respiratory Therapy department. Patients may have additional charges, depending on the services performed.
Description
Variance
Arterial Puncture
Arterial Puncture
The radial artery is the most common site for arterial puncture with alternative sites being the axillary and femoral arteries. The arterial puncture site is selected. The skin is prepped for sterile entry. The selected artery is punctured and the necessary blood samples obtained for separately reportable laboratory studies. The needle is withdrawn and pressure applied to the puncture site.
72% lower than market
Nebulizer Treatment
Nebulizer Treatment
The patient is placed on intermittent inhalation treatment for acute airway obstruction or to induce sputum production for therapeutic and/or diagnostic purposes. To treat acute airway obstruction, pressurized or nonpressurized bronchodilator medication is delivered for short intervals several times a day using an inhaler, nebulizer, aerosol generator, or an intermittent positive pressure breathing (IPPB) device. Bronchodilator medication is suspended as fine particles within a gaseous propellant and taken into the lungs as a fine spray. The medication acts to relax the smooth muscle of the bronchioles and lung tissue, which has constricted in conditions such as an asthma attack or hypersensitivity reaction, severely restricting air flow. The patient uses the prescribed pressurized or nonpressurized inhalation device as directed by the physician typically for 10-15 minutes several times during the day. To induce sputum production for diagnostic purposes, an isotonic or hypertonic solution is delivered using a nebulizer or other device. These solutions induct secretion of sputum in the lower airways. The patient must cough to expectorate the secretions which are collected in a sterile container and sent to the laboratory for separately reportable analysis.
78% lower than market
Gonzales Healthcare Systems Patient Information Price List
OUTPATIENT X-RAY AND RADIOLOGICAL CHARGES
OUTPATIENT X-RAY AND RADIOLOGICAL CHARGES
The following charges reflect our most common x-ray and radiological procedures. For all exams requiring contrast, the contrast will be charged separately.
Description
Variance
3 Phase Bone Scan
3 Phase Bone Scan
Triphasic bone and/or joint imaging is performed using scintigraphy and a radiolabeled isotope tracer. This technique is helpful when diagnosing osteomyelitis and fractures. An intravenous line is established and the radiolabeled isotope tracer is injected directly into the circulatory system. When inflammation is suspected, a blood sample is drawn and centrifuged to separate white blood cells (WBCs), which are then tagged with radioactive calcium and injected back into the patient. In Stage I (nuclear angiogram or flow stage), images are obtained in the first 2-5 seconds after the injection is given. In Stage II (blood pool stage), the images are obtained 5 minutes after the injection. For Stage III (delayed stage), the images are obtained 2-3 hours following the injection. Moderate to severe pathology will be imaged in Stage I and II, chronic or partially treated pathology will be more prominent in Stage III. Cellulitis, for instance, will be imaged during Stage I and II, but not in Stage III. The patient is positioned on the imaging table with the gamma camera over the area of the body to be studied. Scanning is performed at specific interval stages and the radioactive energy emitted is converted into an image. The physician interprets the three phase bone and/or joint imaging study and provides a written report of the findings.
23% lower than market
Bone Density Scan (DEXA Scan)
Bone Density Scan (DEXA Scan)
These codes report dual-energy x-ray absorptiometry (DXA) for bone density study. Measuring bone mass or bone mineral density (BMD) is done to diagnose for bone disease, evaluate bone disease progression, or monitor the results of treatment, particularly for osteoporosis, which puts a bone at higher risk of fracture. The radiation dose of DXA is around 1/30th of that in a standard chest x-ray. DXA involves aiming two x-ray beams of different energy levels at the bones in alternate pulses. Soft tissue absorption is subtracted out, and the BMD is determined by the bone's absorption of each beam in the projected area. The DXA scan measurement is then compared to a same sex standard of bone density at age 30, since the maximum BMD occurs at age 30 in both males and females. The difference between the measured BMD and the sex-matched, average 30-year-old standard is known as the T score. A T score between -1.0 and -2.4 diagnoses osteopenia, while a T score of -2.5 or less indicates osteoporosis.
12% lower than market
Breast Ultrasound - Complete
Breast Ultrasound - Complete
A real time ultrasound of the right or left breast is performed with image documentation, including the axillary area, when performed. Breast ultrasound is used to help diagnose breast abnormalities detected during a physical exam or on mammography. Ultrasound imaging can identify masses as solid or fluid-filled and can show additional structural features of the abnormal area and surrounding tissues. The patient is placed supine with the arm raised above the head on the side being examined. Acoustic coupling gel is applied to the breast and the transducer is pressed firmly against the skin of the breast. The transducer is then swept back and forth over the area of the abnormality and images are obtained. The ultrasonic wave pulses directed at the breast are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the breast and provides a written interpretation.
9% higher than market
Breast Ultrasound - Limited
Breast Ultrasound - Limited
A real time ultrasound of the right or left breast is performed with image documentation, including the axillary area, when performed. Breast ultrasound is used to help diagnose breast abnormalities detected during a physical exam or on mammography. Ultrasound imaging can identify masses as solid or fluid-filled and can show additional structural features of the abnormal area and surrounding tissues. The patient is placed supine with the arm raised above the head on the side being examined. Acoustic coupling gel is applied to the breast and the transducer is pressed firmly against the skin of the breast. The transducer is then swept back and forth over the area of the abnormality and images are obtained. The ultrasonic wave pulses directed at the breast are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the breast and provides a written interpretation.
6% lower than market
CT Abdomen & Pelvis with Contrast
CT Abdomen & Pelvis with Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the abdomen and pelvis. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans. The CT scan is then performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the abdomen and pelvis. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data which is then displayed on the monitor as two-dimensional cross-sectional images of the abdomen or pelvis. The physician reviews the data and images as they are obtained and may request additional sections to provide more detail on areas of interest.
66% lower than market
CT Abdomen & Pelvis with and without Contrast
CT Abdomen & Pelvis with and without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the abdomen and pelvis. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans. The CT scan is then performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the abdomen and pelvis. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data which is then displayed on the monitor as two-dimensional cross-sectional images of the abdomen or pelvis. The physician reviews the data and images as they are obtained and may request additional sections to provide more detail on areas of interest.
61% lower than market
CT Abdomen & Pelvis without Contrast
CT Abdomen & Pelvis without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the abdomen and pelvis. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans. The CT scan is then performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the abdomen and pelvis. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data which is then displayed on the monitor as two-dimensional cross-sectional images of the abdomen or pelvis. The physician reviews the data and images as they are obtained and may request additional sections to provide more detail on areas of interest.
65% lower than market
CT Abdomen with Contrast
CT Abdomen with Contrast
Diagnostic computed tomography (CT) is done on the abdomen to provide detailed visualization of the tissues and organs within the abdominal area. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the abdomen. The physician reviews the images for the cause of abdominal pain, swelling, and fever; for other suspected problems such as appendicitis and kidney stones; for locating tumors, abscesses, or masses; or for evaluating the abdominal area for hernias, infections, or internal injury. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings.
38% lower than market
CT Abdomen with and without Contrast
CT Abdomen with and without Contrast
Diagnostic computed tomography (CT) is done on the abdomen to provide detailed visualization of the tissues and organs within the abdominal area. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the abdomen. The physician reviews the images for the cause of abdominal pain, swelling, and fever; for other suspected problems such as appendicitis and kidney stones; for locating tumors, abscesses, or masses; or for evaluating the abdominal area for hernias, infections, or internal injury. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings.
27% lower than market
CT Abdomen without Contrast
CT Abdomen without Contrast
Diagnostic computed tomography (CT) is done on the abdomen to provide detailed visualization of the tissues and organs within the abdominal area. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the abdomen. The physician reviews the images for the cause of abdominal pain, swelling, and fever; for other suspected problems such as appendicitis and kidney stones; for locating tumors, abscesses, or masses; or for evaluating the abdominal area for hernias, infections, or internal injury. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings.
41% lower than market
CT Angiogram Abdomen & Pelvis with and without Contrast
CT Angiogram Abdomen & Pelvis with and without Contrast
Computed tomographic angiography (CTA) provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images of the abdomen and pelvis are obtained as needed. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA of the abdomen and pelvis is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the blood vessels of the abdomen and pelvis.
44% lower than market
CT Angiogram Abdomen with and without Contrast
CT Angiogram Abdomen with and without Contrast
A computed tomographic angiography (CTA) of the abdomen is performed with contrast material including image postprocessing. Noncontrast images may also be obtained and are included when performed. CTA provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images may be obtained. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the blood vessels of the abdomen.
43% lower than market
CT Angiogram Chest with and without Contrast
CT Angiogram Chest with and without Contrast
A computed tomographic angiography (CTA) of the noncoronary vessels of the chest is performed with contrast material including image postprocessing. Noncontrast images may also be obtained and are included when performed. CTA provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images may be obtained. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the noncoronary vessels of the chest.
47% lower than market
CT Angiogram Head with and without Contrast
CT Angiogram Head with and without Contrast
A computed tomographic angiography (CTA) of the head is performed with contrast material including image postprocessing. Noncontrast images may also be obtained and are included when performed. CTA provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images may be obtained. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the head.
56% lower than market
CT Angiogram Neck with and without Contrast
CT Angiogram Neck with and without Contrast
A computed tomographic angiography (CTA) of the neck is performed with contrast material including image postprocessing. Noncontrast images may also be obtained and are included when performed. CTA provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images may be obtained. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the neck.
51% lower than market
CT Arm with Contrast
CT Arm with Contrast
Diagnostic computed tomography (CT) is done on the upper extremity to provide detailed visualization of the tissues and bone structure of the arm. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the arm can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the upper extremity. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings. The physician reviews the images to look for suspected problems with the arm such as locating tumors, abscesses, or masses; evaluating the bones for degenerative conditions, fractures, or other injury following trauma; and finding the cause of pain or swelling.
37% lower than market
CT Arm without Contrast
CT Arm without Contrast
Diagnostic computed tomography (CT) is done on the upper extremity to provide detailed visualization of the tissues and bone structure of the arm. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the arm can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the upper extremity. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings. The physician reviews the images to look for suspected problems with the arm such as locating tumors, abscesses, or masses; evaluating the bones for degenerative conditions, fractures, or other injury following trauma; and finding the cause of pain or swelling.
28% lower than market
CT Chest with Contrast
CT Chest with Contrast
Diagnostic computed tomography (CT) is done on the thorax. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and reconstructs a 3D image. Thin, cross-sectional 2D and 3D slices are then produced of the targeted organ or area. The patient is placed inside the CT scanner on the table and images are obtained of the thorax to look for problems or disease in the lungs, heart, esophagus, soft tissue, or major blood vessels of the chest, such as the aorta. The physician reviews the images to look for suspected disease such as infection, lung cancer, pulmonary embolism, aneurysms, and metastatic cancer to the chest from other areas.
55% lower than market
CT Chest with and without Contrast
CT Chest with and without Contrast
Diagnostic computed tomography (CT) is done on the thorax. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and reconstructs a 3D image. Thin, cross-sectional 2D and 3D slices are then produced of the targeted organ or area. The patient is placed inside the CT scanner on the table and images are obtained of the thorax to look for problems or disease in the lungs, heart, esophagus, soft tissue, or major blood vessels of the chest, such as the aorta. The physician reviews the images to look for suspected disease such as infection, lung cancer, pulmonary embolism, aneurysms, and metastatic cancer to the chest from other areas.
41% lower than market
CT Chest without Contrast
CT Chest without Contrast
Diagnostic computed tomography (CT) is done on the thorax. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and reconstructs a 3D image. Thin, cross-sectional 2D and 3D slices are then produced of the targeted organ or area. The patient is placed inside the CT scanner on the table and images are obtained of the thorax to look for problems or disease in the lungs, heart, esophagus, soft tissue, or major blood vessels of the chest, such as the aorta. The physician reviews the images to look for suspected disease such as infection, lung cancer, pulmonary embolism, aneurysms, and metastatic cancer to the chest from other areas.
47% lower than market
CT Cranial Cavity with Contrast
CT Cranial Cavity with Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the eye socket (orbit); region that houses the pituitary gland (sella); region at the base of the skull (posterior fossa); or any portion of the ear (outer, middle, or inner) is obtained. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
52% lower than market
CT Cranial Cavity without Contrast
CT Cranial Cavity without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the eye socket (orbit); region that houses the pituitary gland (sella); region at the base of the skull (posterior fossa); or any portion of the ear (outer, middle, or inner) is obtained. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings.
40% lower than market
CT Face with Contrast
CT Face with Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the maxillofacial area is obtained. The maxillofacial area includes the forehead (frontal bone), sinuses, nose and nasal bones, jaw (maxilla and mandible). The only facial region not included in this study is the orbit. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
70% lower than market
CT Face without Contrast
CT Face without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the maxillofacial area is obtained. The maxillofacial area includes the forehead (frontal bone), sinuses, nose and nasal bones, jaw (maxilla and mandible). The only facial region not included in this study is the orbit. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
48% lower than market
CT Head Brain with Contrast
CT Head Brain with Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the head or brain is performed. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
55% lower than market
CT Head Brain with and without Contrast
CT Head Brain with and without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the head or brain is performed. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
45% lower than market
CT Head Brain without Contrast
CT Head Brain without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the head or brain is performed. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
52% lower than market
CT Leg with Contrast
CT Leg with Contrast
Diagnostic computed tomography (CT) is done on the lower extremity to provide detailed visualization of the tissues and bone structure of the leg. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the leg can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the lower extremity.
58% lower than market
CT Leg without Contrast
CT Leg without Contrast
Diagnostic computed tomography (CT) is done on the lower extremity to provide detailed visualization of the tissues and bone structure of the leg. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the leg can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the lower extremity.
44% lower than market
CT Neck with Contrast
CT Neck with Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In a CT scan of the soft tissues of the neck, the patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
62% lower than market
CT Neck with and without Contrast
CT Neck with and without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In a CT scan of the soft tissues of the neck, the patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
64% lower than market
CT Neck without Contrast
CT Neck without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In a CT scan of the soft tissues of the neck, the patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
66% lower than market
CT Pelvis with Contrast
CT Pelvis with Contrast
Diagnostic computed tomography (CT) is done on the pelvis to provide detailed visualization of the organs and structures within or near the pelvis, such as kidneys, bladder, prostate, uterus, cervix, vagina, lymph nodes, and pelvic bones. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of organs within the pelvis can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the pelvis area. The physician reviews the images to gather information for specified purposes such as diagnosing or monitoring cancer, evaluating the pelvic bones for fractures or other injury following trauma, locating abscesses or masses found during physical exam, finding the cause of pelvic pain, providing more detailed information before surgery, and evaluating the patient after surgery.
54% lower than market
CT Pelvis without Contrast
CT Pelvis without Contrast
Diagnostic computed tomography (CT) is done on the pelvis to provide detailed visualization of the organs and structures within or near the pelvis, such as kidneys, bladder, prostate, uterus, cervix, vagina, lymph nodes, and pelvic bones. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of organs within the pelvis can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the pelvis area. The physician reviews the images to gather information for specified purposes such as diagnosing or monitoring cancer, evaluating the pelvic bones for fractures or other injury following trauma, locating abscesses or masses found during physical exam, finding the cause of pelvic pain, providing more detailed information before surgery, and evaluating the patient after surgery.
61% lower than market
CT Scan of Abdominal Aorta and Both Leg Arteries with Contrast
CT Scan of Abdominal Aorta and Both Leg Arteries with Contrast
A computed tomographic angiography (CTA) of the abdominal aorta with bilateral iliofemoral lower extremity run-off is performed with contrast material including image postprocessing. Noncontrast images may also be obtained and are included when performed. CTA provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images may be obtained. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the abdominal aorta with bilateral iliofemoral lower extremity runoff.
43% lower than market
CT Spine Cervical with Contrast
CT Spine Cervical with Contrast
Diagnostic computed tomography (CT) is done on the cervical spine. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the spine can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the cervical spine.
65% lower than market
CT Spine Cervical without Contrast
CT Spine Cervical without Contrast
Diagnostic computed tomography (CT) is done on the cervical spine. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the spine can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the cervical spine.
52% lower than market
CT Spine Lumbar with Contrast
CT Spine Lumbar with Contrast
Diagnostic computed tomography (CT) is done on the lumbar spine. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the spine can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the lumbar spine. The physician reviews the images to look for suspected problems with the spine such as bone disease, and evaluate for fractures or other injuries as well as birth defects of the spine in children.
63% lower than market
CT Spine Lumbar without Contrast
CT Spine Lumbar without Contrast
Diagnostic computed tomography (CT) is done on the lumbar spine. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the spine can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the lumbar spine. The physician reviews the images to look for suspected problems with the spine such as bone disease, and evaluate for fractures or other injuries as well as birth defects of the spine in children.
33% lower than market
CT Spine Thoracic with Contrast
CT Spine Thoracic with Contrast
Diagnostic computed tomography (CT) is done on the thoracic spine. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the spine can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the thoracic spine. The physician reviews the images to look for suspected problems with the spine such as bone disease, and evaluate for fractures or other injuries as well as birth defects of the spine in children.
65% lower than market
CT Spine Thoracic without Contrast
CT Spine Thoracic without Contrast
Diagnostic computed tomography (CT) is done on the thoracic spine. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the spine can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the thoracic spine. The physician reviews the images to look for suspected problems with the spine such as bone disease, and evaluate for fractures or other injuries as well as birth defects of the spine in children.
25% lower than market
CT scan of arm before and after contrast
CT scan of arm before and after contrast
18% lower than market
CT scan of arm blood vessels with contrast
CT scan of arm blood vessels with contrast
50% lower than market
CT scan of cranial cavity before and after contrast
CT scan of cranial cavity before and after contrast
8% lower than market
CT scan of face before and after contrast
CT scan of face before and after contrast
70% lower than market
CT scan of heart blood vessels and grafts with contrast dye
CT scan of heart blood vessels and grafts with contrast dye
80% lower than market
CT scan of leg before and after contrast injection
CT scan of leg before and after contrast injection
1% lower than market
CT scan of lower leg blood vessels with contrast
CT scan of lower leg blood vessels with contrast
53% lower than market
CT scan of lower spine before and after contrast
CT scan of lower spine before and after contrast
69% lower than market
CT scan of middle spine before and after contrast
CT scan of middle spine before and after contrast
78% lower than market
CT scan of pelvis before and after contrast
CT scan of pelvis before and after contrast
51% lower than market
CT scan of upper spine before and after contrast
CT scan of upper spine before and after contrast
78% lower than market
Chest X-Ray; 2 Views
Chest X-Ray; 2 Views
A radiologic examination of the chest is performed. Chest radiographs (X-rays) provide images of the heart, lungs, bronchi, major blood vessels (aorta, vena cava, pulmonary vessels), and bones, (sternum, ribs, clavicle, scapula, spine). The most common views are frontal (also referred to as anteroposterior or AP), posteroanterior (PA), and lateral. To obtain a frontal view, the patient is positioned facing the x-ray machine. A PA view is obtained with the patient's back toward the x-ray machine. For a lateral view, the patient is positioned with side of the chest toward the machine. Other views that may be obtained include apical lordotic, oblique, and lateral decubitus. An apical lordotic image provides better visualization of the apical (top) regions of the lungs. The patient is positioned with the back arched so that the tops of the lungs can be x-rayed. Oblique views may be obtained to evaluate a pulmonary or mediastinal mass or opacity or to provide additional images of the heart and great vessels. There are four positions used for oblique views including right and left anterior oblique, and right and left posterior oblique. Anterior oblique views are obtained with the patient standing and the chest rotated 45 degrees. The arm closest to the x-ray cassette is flexed with the hand resting on the hip. The opposite arm is raised as high as possible. The part of the chest farthest away from the x-ray cassette is the area being studied. Posterior oblique views are typically obtained only when the patient is too ill to stand or lay prone for anterior oblique views. A lateral decubitus view is obtained with the patient lying on the side; the patient's head rests on one arm, and the other arm is raised over the head with the elbow bent. Images are recorded on hard copy film or stored electronically as digital images. The physician reviews the images, notes any abnormalities, and provides a written interpretation of the findings.
24% lower than market
Chest X-Ray; Single View
Chest X-Ray; Single View
A radiologic examination of the chest is performed. Chest radiographs (X-rays) provide images of the heart, lungs, bronchi, major blood vessels (aorta, vena cava, pulmonary vessels), and bones, (sternum, ribs, clavicle, scapula, spine). The most common views are frontal (also referred to as anteroposterior or AP), posteroanterior (PA), and lateral. To obtain a frontal view, the patient is positioned facing the x-ray machine. A PA view is obtained with the patient's back toward the x-ray machine. For a lateral view, the patient is positioned with side of the chest toward the machine. Other views that may be obtained include apical lordotic, oblique, and lateral decubitus. An apical lordotic image provides better visualization of the apical (top) regions of the lungs. The patient is positioned with the back arched so that the tops of the lungs can be x-rayed. Oblique views may be obtained to evaluate a pulmonary or mediastinal mass or opacity or to provide additional images of the heart and great vessels. There are four positions used for oblique views including right and left anterior oblique, and right and left posterior oblique. Anterior oblique views are obtained with the patient standing and the chest rotated 45 degrees. The arm closest to the x-ray cassette is flexed with the hand resting on the hip. The opposite arm is raised as high as possible. The part of the chest farthest away from the x-ray cassette is the area being studied. Posterior oblique views are typically obtained only when the patient is too ill to stand or lay prone for anterior oblique views. A lateral decubitus view is obtained with the patient lying on the side; the patient's head rests on one arm, and the other arm is raised over the head with the elbow bent. Images are recorded on hard copy film or stored electronically as digital images. The physician reviews the images, notes any abnormalities, and provides a written interpretation of the findings.
60% lower than market
Complete bilateral noninvasive physiologic studies of upper or lower extremity arteries, 3 or more levels
Complete bilateral noninvasive physiologic studies of upper or lower extremity arteries, 3 or more levels
4% higher than market
Diagnostic mammography, bilateral
Diagnostic mammography, bilateral
These codes report diagnostic mammography of one breast or both breasts with computer-aided lesion detection (CAD), when performed. Mammography is the radiographic imaging of the breast using low-dose ionizing radiation. The x-rays used in mammography have a longer wavelength that those typically used for bone imaging. The test is done to detect tumors or cysts in women who have symptoms of breast disease or a palpable mass. The breast is compressed between planes on a machine dedicated strictly to mammography. This evens out the dense tissue and holds the breast still for a better quality image. Computer-aided detection uses algorithm analysis of the image data obtained from the mammographic films, with or without digitization of the radiographic images. The mammographic picture of the breast is used by scanning the x-ray film with a laser beam, usually converting the scanned image of the analog film into digital data for the computer first, then employing a methodical, step-by-step pattern of analyzing the data on video display for unusual or suspicious areas.
22% higher than market
Diagnostic mammography, unilateral
Diagnostic mammography, unilateral
These codes report diagnostic mammography of one breast or both breasts with computer-aided lesion detection (CAD), when performed. Mammography is the radiographic imaging of the breast using low-dose ionizing radiation. The x-rays used in mammography have a longer wavelength that those typically used for bone imaging. The test is done to detect tumors or cysts in women who have symptoms of breast disease or a palpable mass. The breast is compressed between planes on a machine dedicated strictly to mammography. This evens out the dense tissue and holds the breast still for a better quality image. Computer-aided detection uses algorithm analysis of the image data obtained from the mammographic films, with or without digitization of the radiographic images. The mammographic picture of the breast is used by scanning the x-ray film with a laser beam, usually converting the scanned image of the analog film into digital data for the computer first, then employing a methodical, step-by-step pattern of analyzing the data on video display for unusual or suspicious areas.
37% higher than market
Fluoroscopic guidance for insertion, replacement or removal of central venous access device
Fluoroscopic guidance for insertion, replacement or removal of central venous access device
80% lower than market
Follow-up or limited ultrasound examination of heart
Follow-up or limited ultrasound examination of heart
50% lower than market
Imaging for Evaluation of Swalling Function
Imaging for Evaluation of Swalling Function
A radiologic study with cineradiography/videoradiography may be performed to assess swallowing function in patients with dysphagia. A swallowing function study (modified barium swallow, MBS) may be indicated for patients with a history of stroke or other central nervous system (CNS) disorders, surgery or radiation to the head/neck, neuromuscular or rheumatologic disease, generalized debilitation and head/neck/throat injury including peripheral nerve injury. The patient is seated upright or semi-reclining with the fluoroscopy machine focused on the head and neck. Food and liquids of various texture and quantity are mixed or soaked in contrast medium (barium) and administered to the patient. A fluoroscopic recording is made of the food or fluid in the oral cavity, larynx, pharynx, and upper esophagus to document mastication and tongue mobility, elevation and retraction of the velum, tongue base retraction and movement of the hyoid bone and larynx, closure of the larynx, contraction of the pharynx, and the duration and extent of pharyngoesophageal segment opening. Observation and recording is made of any penetration or aspiration of food and fluid into the upper airways. The measurement of muscle sensation and strength may be inferred or calculated directly from the information obtained during the study.
24% lower than market
Imaging for abscess or abnormal drainage tract procedure
Imaging for abscess or abnormal drainage tract procedure
44% lower than market
Imaging of 2 or more joints, single view
Imaging of 2 or more joints, single view
52% lower than market
Imaging of Abdomen and Chest
Imaging of Abdomen and Chest
A radiologic examination of the abdomen images the internal organs, soft tissue (muscle, fat), and supporting skeleton. X-ray imaging uses indirect ionizing radiation to take pictures of non-uniform material, such as human tissue, because of its different density and composition, which allows some of the x-rays to be absorbed and some to pass through and be captured. This produces a 2D image of the structures. The radiographs may be taken to look for size, shape, and position of organs, pattern of air (bowel gas), obstruction, foreign objects, and calcification in the gallbladder, urinary tract, and aorta. A radiologic examination of the abdomen may be ordered to diagnose abdominal distention and pain, vomiting, diarrhea or constipation, and traumatic injury; it may also be obtained as a screening exam or scout film prior to other imagining procedures.
59% lower than market
Imaging of Abdomen; 2 Views
Imaging of Abdomen; 2 Views
A radiologic examination of the abdomen images the internal organs, soft tissue (muscle, fat), and supporting skeleton. X-ray imaging uses indirect ionizing radiation to take pictures of non-uniform material, such as human tissue, because of its different density and composition, which allows some of the x-rays to be absorbed and some to pass through and be captured. This produces a 2D image of the structures. The radiographs may be taken to look for size, shape, and position of organs, pattern of air (bowel gas), obstruction, foreign objects, and calcification in the gallbladder, urinary tract, and aorta. A radiologic examination of the abdomen may be ordered to diagnose abdominal distention and pain, vomiting, diarrhea or constipation, and traumatic injury; it may also be obtained as a screening exam or scout film prior to other imagining procedures. Common views of the abdomen include front to back anteroposterior (AP) with the patient lying supine or standing erect, back to front posteroanterior (PA) with the patient lying prone, lateral with the patient lying on the side, lateral decubitus anteroposterior (side lying, front to back view), lateral dorsal decubitus (lying supine, side view), oblique (anterior or posterior rotation), and coned (small collimated) views which may be used to localize and differentiate lesions, calcifications, or herniations.
17% lower than market
Imaging of Abdomen; Single View
Imaging of Abdomen; Single View
A radiologic examination of the abdomen images the internal organs, soft tissue (muscle, fat), and supporting skeleton. X-ray imaging uses indirect ionizing radiation to take pictures of non-uniform material, such as human tissue, because of its different density and composition, which allows some of the x-rays to be absorbed and some to pass through and be captured. This produces a 2D image of the structures. The radiographs may be taken to look for size, shape, and position of organs, pattern of air (bowel gas), obstruction, foreign objects, and calcification in the gallbladder, urinary tract, and aorta. A radiologic examination of the abdomen may be ordered to diagnose abdominal distention and pain, vomiting, diarrhea or constipation, and traumatic injury; it may also be obtained as a screening exam or scout film prior to other imagining procedures. Common views of the abdomen include front to back anteroposterior (AP) with the patient lying supine or standing erect, back to front posteroanterior (PA) with the patient lying prone, lateral with the patient lying on the side, lateral decubitus anteroposterior (side lying, front to back view), lateral dorsal decubitus (lying supine, side view), oblique (anterior or posterior rotation), and coned (small collimated) views which may be used to localize and differentiate lesions, calcifications, or herniations.
30% lower than market
Imaging of Liver and Bile Duct System with Use of Drugs
Imaging of Liver and Bile Duct System with Use of Drugs
Hepatobiliary system nuclear imaging tracks the production and flow of bile from the liver to the small intestine using a radioactive tracer that highlights the liver, bile ducts, and gallbladder if the gallbladder has not been surgically removed. This procedure may also be referred to as a HIDA scan which stands for hepatobiliary iminodiacetic acid scan. The procedure is performed to evaluate liver function, specifically bile production and excretion, and to evaluate the drainage system (bile ducts) and gallbladder for obstruction, inflammation, or other abnormalities. An intravenous catheter is placed. The radioactive tracer is injected. A gamma camera travels back and forth over the abdomen and multiple images are obtained as the radioactive tracer flows through the bloodstream and is taken up by the bile-producing cells in the liver. Images are obtained continuously as the radioactive tracer, which is now contained in the bile, travels from the liver through the biliary ducts into the gallbladder, and then from the gallbladder through the common bile duct into the duodenum. The patient is monitored throughout the procedure. Upon completion, the physician reviews the images and provides a written report of findings. The procedure is performed as described above except that during the procedure additional medications are administered. These medications may be given to enhance the gallbladder images or to trigger the gallbladder to empty. The physician may also perform a test called gallbladder ejection fraction which is a measurement of the rate at which bile is released from the gallbladder.
20% lower than market
Imaging of Liver and Bile Duct System without Use of Drugs
Imaging of Liver and Bile Duct System without Use of Drugs
Hepatobiliary system nuclear imaging tracks the production and flow of bile from the liver to the small intestine using a radioactive tracer that highlights the liver, bile ducts, and gallbladder if the gallbladder has not been surgically removed. This procedure may also be referred to as a HIDA scan which stands for hepatobiliary iminodiacetic acid scan. The procedure is performed to evaluate liver function, specifically bile production and excretion, and to evaluate the drainage system (bile ducts) and gallbladder for obstruction, inflammation, or other abnormalities. An intravenous catheter is placed. The radioactive tracer is injected. A gamma camera travels back and forth over the abdomen and multiple images are obtained as the radioactive tracer flows through the bloodstream and is taken up by the bile-producing cells in the liver. Images are obtained continuously as the radioactive tracer, which is now contained in the bile, travels from the liver through the biliary ducts into the gallbladder, and then from the gallbladder through the common bile duct into the duodenum. The patient is monitored throughout the procedure. Upon completion, the physician reviews the images and provides a written report of findings.
11% lower than market
Imaging of liver and spleen
Imaging of liver and spleen
75% lower than market
Imaging of lymphatic tissue and lymph node
Imaging of lymphatic tissue and lymph node
70% lower than market
Imaging of surgical specimen
Imaging of surgical specimen
67% lower than market
Kidney imaging with assessment of blood flow and function; single study with pharmacological intervention
Kidney imaging with assessment of blood flow and function; single study with pharmacological intervention
The size, shape, and structure (morphology) of the kidney and its function, including vascular flow, is assessed using scintigraphy and a radiolabeled isotope tracer. The kidneys filter waste from the blood; maintain a balance of certain chemicals; and produce erythropoietin for red blood cell growth, renin for blood pressure control, and calcitriol for calcium uptake by the bones. This procedure may be used to evaluate renal blood flow, renovascular hypertension, renal cysts, tumors, abscesses, and kidney disease, as well as monitor kidney transplants. An intravenous line is established and the radiolabeled isotope tracer is injected directly into the circulatory system. The patient is positioned on the imaging table with the gamma camera focused on the kidneys. Scanning is performed at specific intervals and the radioactive energy emitted is converted into an image. A diuretic may be administered during the procedure for more detailed images of kidney obstruction. An angiotensin converting enzyme (ACE-inhibitor) medication may be administered to help determine if hypertension is associated with renal vascular flow.
13% lower than market
Limited bilateral noninvasive physiologic studies of upper or lower extremity arteries
Limited bilateral noninvasive physiologic studies of upper or lower extremity arteries
2% higher than market
MRA Head without Contrast
MRA Head without Contrast
Magnetic resonance angiography (MRA) is performed on the head without contrast materials, with contrast materials, and without contrast materials followed by contrast materials. MRA is a noninvasive radiology procedure used to evaluate arterial and venous vessels for conditions such as atherosclerotic stenosis, arterial dissection, acute thrombosis, aneurysms or pseudo-aneurysms, vascular loops, vascular malformations/tumors, or arterial causes of pulsatile tinnitus. MRA may be performed following vascular surgery on the intracranial vessels to assess vascular status. MRA uses a magnetic field and pulses of radiowave energy to provide images of the blood vessels. Multiple images, 1-2 mm in thickness, are obtained and then processed using an array algorithm to produce maximum intensity projections (MIPs). MIPs are similar to subtraction angiograms. Areas of interest are identified by the radiologist and coned down to produce detailed views of the arteries. This post-processing of the images is performed by a technologist. The MIPs are reviewed by the radiologist along with the initial MRA images. The radiologist provides a written interpretation of findings.
38% lower than market
MRA Neck with and without Contrast
MRA Neck with and without Contrast
Magnetic resonance angiography (MRA) is performed on the neck without contrast materials, with contrast materials, and without contrast materials followed by contrast materials. MRA is a noninvasive radiology procedure used to evaluate arterial and venous vessels for conditions such as atherosclerotic stenosis, arterial dissection, acute thrombosis, aneurysms or pseudo-aneurysms, vascular loops, vascular malformations/tumors, or arterial causes of pulsatile tinnitus. MRA may be performed following vascular surgery on the neck vessels to assess vascular status. MRA uses a magnetic field and pulses of radiowave energy to provide images of the blood vessels. Multiple images of 1-2 mm in thickness are obtained and then processed using an array algorithm to produce maximum intensity projections (MIPs). MIPs are similar to subtraction angiograms. Areas of interest are identified by the radiologist and coned down to produce detailed views of the arteries. This post-processing of the images is performed by a technologist. The MIPs are reviewed by the radiologist along with the initial MRA images. The radiologist provides a written interpretation of findings.
2% lower than market
MRA Neck without Contrast
MRA Neck without Contrast
Magnetic resonance angiography (MRA) is performed on the neck without contrast materials, with contrast materials, and without contrast materials followed by contrast materials. MRA is a noninvasive radiology procedure used to evaluate arterial and venous vessels for conditions such as atherosclerotic stenosis, arterial dissection, acute thrombosis, aneurysms or pseudo-aneurysms, vascular loops, vascular malformations/tumors, or arterial causes of pulsatile tinnitus. MRA may be performed following vascular surgery on the neck vessels to assess vascular status. MRA uses a magnetic field and pulses of radiowave energy to provide images of the blood vessels. Multiple images of 1-2 mm in thickness are obtained and then processed using an array algorithm to produce maximum intensity projections (MIPs). MIPs are similar to subtraction angiograms. Areas of interest are identified by the radiologist and coned down to produce detailed views of the arteries. This post-processing of the images is performed by a technologist. The MIPs are reviewed by the radiologist along with the initial MRA images. The radiologist provides a written interpretation of findings.
23% lower than market
MRA scan of head blood vessels before and after contrast
MRA scan of head blood vessels before and after contrast
50% lower than market
MRI Abdomen with and without Contrast
MRI Abdomen with and without Contrast
Magnetic resonance imaging is done on the abdomen. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the abdomen. MRI is often done for trauma and suspected internal injury, and unexplained abdominal pain, swelling, and fever. MRI scans provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms, such as the location of tumors, abscesses, or masses; the presence of kidney stones, hernias, appendicitis or other infections, and internal injury.
47% lower than market
MRI Abdomen without Contrast
MRI Abdomen without Contrast
Magnetic resonance imaging is done on the abdomen. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the abdomen. MRI is often done for trauma and suspected internal injury, and unexplained abdominal pain, swelling, and fever. MRI scans provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms, such as the location of tumors, abscesses, or masses; the presence of kidney stones, hernias, appendicitis or other infections, and internal injury.
58% lower than market
MRI Arm Join with and without Contrast
MRI Arm Join with and without Contrast
Magnetic resonance imaging is done on a joint of the upper or lower arm. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the joint. MRI scans on joints of the upper extremity are often done for injury, trauma, unexplained pain, redness, or swelling, and freezing of a joint with loss of motion. MRI scans provide clear images of areas that may be difficult to see on CT.
11% lower than market
MRI Arm Joint without Contrast
MRI Arm Joint without Contrast
Magnetic resonance imaging is done on a joint of the upper or lower arm. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the joint. MRI scans on joints of the upper extremity are often done for injury, trauma, unexplained pain, redness, or swelling, and freezing of a joint with loss of motion. MRI scans provide clear images of areas that may be difficult to see on CT.
12% lower than market
MRI Arm with and without Contrast
MRI Arm with and without Contrast
Magnetic resonance imaging is done on the upper or lower arm, other than a joint. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the arm. MRI scans of the arm are often done for injury, trauma, or unexplained pain and provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information for diagnosing tendinitis; muscle atrophy and other anomalous muscular development; lesions of soft tissue and bone; osteomyelitis; contusions, hematomas, and other masses that can be palpated on exam; and broken bones or other abnormal findings on x-ray or bone scan.
12% lower than market
MRI Arm without Contrast
MRI Arm without Contrast
Magnetic resonance imaging is done on the upper or lower arm, other than a joint. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the arm. MRI scans of the arm are often done for injury, trauma, or unexplained pain and provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information for diagnosing tendinitis; muscle atrophy and other anomalous muscular development; lesions of soft tissue and bone; osteomyelitis; contusions, hematomas, and other masses that can be palpated on exam; and broken bones or other abnormal findings on x-ray or bone scan.
12% lower than market
MRI Brain with Contrast
MRI Brain with Contrast
Magnetic resonance imaging is done on the brain. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. MRI of the brain provides reliable information for diagnosing the presence, location, and extent of tumors, cysts, or other masses; swelling and infection; vascular disorders or malformations, such as aneurysms and intracranial hemorrhage; disease of the pituitary gland; stroke; developmental and structural anomalies of the brain; hydrocephalus; and chronic conditions and diseases affecting the central nervous system such as headaches and multiple sclerosis.
37% lower than market
MRI Brain with and without Conrast
MRI Brain with and without Conrast
Magnetic resonance imaging is done on the brain. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. MRI of the brain provides reliable information for diagnosing the presence, location, and extent of tumors, cysts, or other masses; swelling and infection; vascular disorders or malformations, such as aneurysms and intracranial hemorrhage; disease of the pituitary gland; stroke; developmental and structural anomalies of the brain; hydrocephalus; and chronic conditions and diseases affecting the central nervous system such as headaches and multiple sclerosis.
21% lower than market
MRI Brain without Contrast
MRI Brain without Contrast
Magnetic resonance imaging is done on the brain. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. MRI of the brain provides reliable information for diagnosing the presence, location, and extent of tumors, cysts, or other masses; swelling and infection; vascular disorders or malformations, such as aneurysms and intracranial hemorrhage; disease of the pituitary gland; stroke; developmental and structural anomalies of the brain; hydrocephalus; and chronic conditions and diseases affecting the central nervous system such as headaches and multiple sclerosis.
16% lower than market
MRI Leg Joint with and without Contrast
MRI Leg Joint with and without Contrast
Magnetic resonance imaging is done on a joint of the upper or lower leg. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the joint. MRI scans on joints of the lower extremity are often done for injury, trauma, unexplained pain, redness, or swelling, and freezing of a joint with loss of motion. MRI scans provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information on the presence and extent of tumors, masses, or lesions within the joint; infection, inflammation, and swelling of soft tissue; muscle atrophy and other anomalous muscular development; and joint effusion and vascular necrosis.
26% lower than market
MRI Leg Joint without Contrast
MRI Leg Joint without Contrast
Magnetic resonance imaging is done on a joint of the upper or lower leg. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the joint. MRI scans on joints of the lower extremity are often done for injury, trauma, unexplained pain, redness, or swelling, and freezing of a joint with loss of motion. MRI scans provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information on the presence and extent of tumors, masses, or lesions within the joint; infection, inflammation, and swelling of soft tissue; muscle atrophy and other anomalous muscular development; and joint effusion and vascular necrosis.
11% lower than market
MRI Leg with and without Contrast
MRI Leg with and without Contrast
Magnetic resonance imaging is done on the upper or lower leg, other than a joint. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the leg. MRI scans of the leg are often done for injury, trauma, or unexplained pain and provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information for diagnosing tendinitis; muscle atrophy and other anomalous muscular development; lesions of soft tissue and bone; osteomyelitis; contusions, hematomas, and other masses that can be palpated on exam; and broken bones or other abnormal findings on x-ray or bone scan.
11% lower than market
MRI Leg without Contrast
MRI Leg without Contrast
Magnetic resonance imaging is done on the upper or lower leg, other than a joint. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the leg. MRI scans of the leg are often done for injury, trauma, or unexplained pain and provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information for diagnosing tendinitis; muscle atrophy and other anomalous muscular development; lesions of soft tissue and bone; osteomyelitis; contusions, hematomas, and other masses that can be palpated on exam; and broken bones or other abnormal findings on x-ray or bone scan.
Approximately equal to market
MRI Orbit, Face, Neck with and without Contrast
MRI Orbit, Face, Neck with and without Contrast
Magnetic resonance imaging is done on the orbit, the face, and/or the neck. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. Orbital MRI provides reliable information for diagnosing tumors of the eye; infection or inflammation of the lacrimal glands and other soft tissues around the eye as well as osteomyelitis of nearby bone; damage or deterioration of the optic nerve; vascular edema or hemangioma of the eye area; and orbital muscular disorders. It is often performed in cases of trauma. MRI of the face and neck region is used to detect problems and abnormalities occurring outside the skull in the mouth, tongue, pharynx, nasal and sinus cavities, salivary glands, and vocal cords. MRI provides information on the presence and extent of tumors, masses, or lesions; infection, inflammation, and swelling of soft tissue; vascular edema or lesions; muscular abnormalities; and vocal cord paralysis.
48% lower than market
MRI Orbit, Face, Neck without Contrast
MRI Orbit, Face, Neck without Contrast
Magnetic resonance imaging is done on the orbit, the face, and/or the neck. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. Orbital MRI provides reliable information for diagnosing tumors of the eye; infection or inflammation of the lacrimal glands and other soft tissues around the eye as well as osteomyelitis of nearby bone; damage or deterioration of the optic nerve; vascular edema or hemangioma of the eye area; and orbital muscular disorders. It is often performed in cases of trauma. MRI of the face and neck region is used to detect problems and abnormalities occurring outside the skull in the mouth, tongue, pharynx, nasal and sinus cavities, salivary glands, and vocal cords. MRI provides information on the presence and extent of tumors, masses, or lesions; infection, inflammation, and swelling of soft tissue; vascular edema or lesions; muscular abnormalities; and vocal cord paralysis.
43% lower than market
MRI Pelvis with and without Contrast
MRI Pelvis with and without Contrast
Magnetic resonance imaging (MRI) is done on the pelvis and organs within the pelvic area. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and converts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the hip area. MRI scans of the pelvis are often done for injury, trauma, birth defects, or unexplained hip or pelvic pain.
51% lower than market
MRI Pelvis without Contrast
MRI Pelvis without Contrast
Magnetic resonance imaging (MRI) is done on the pelvis and organs within the pelvic area. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and converts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the hip area. MRI scans of the pelvis are often done for injury, trauma, birth defects, or unexplained hip or pelvic pain.
55% lower than market
MRI Spine Cervical with and without Contrast
MRI Spine Cervical with and without Contrast
Magnetic resonance imaging (MRI) is done on the cervical, thoracic, or lumbar spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and coverts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back/neck pain is unsuccessful and more aggressive treatments are considered or following surgery. Images are taken first without contrast and again after the administration of contrast to see the spinal area better. The physician reviews the images to look for specific information that may correlate to the patient's symptoms, such as abnormal spinal alignment; disease or injury of vertebral bodies; intervertebral disc herniation, degeneration, or dehydration; the size of the spinal canal to accommodate the cord and nerve roots; pinched or inflamed nerves; or any changes since surgery.
13% lower than market
MRI Spine Cervical without Contrast
MRI Spine Cervical without Contrast
Magnetic resonance imaging (MRI) is done on the cervical spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and converts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back/neck pain is unsuccessful and more aggressive treatments are considered or following surgery.
21% lower than market
MRI Spine Lumbar with and without Contrast
MRI Spine Lumbar with and without Contrast
Magnetic resonance imaging (MRI) is done on the cervical, thoracic, or lumbar spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and coverts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back/neck pain is unsuccessful and more aggressive treatments are considered or following surgery. Images are taken first without contrast and again after the administration of contrast to see the spinal area better. The physician reviews the images to look for specific information that may correlate to the patient's symptoms, such as abnormal spinal alignment; disease or injury of vertebral bodies; intervertebral disc herniation, degeneration, or dehydration; the size of the spinal canal to accommodate the cord and nerve roots; pinched or inflamed nerves; or any changes since surgery.
31% lower than market
MRI Spine Lumbar without Contrast
MRI Spine Lumbar without Contrast
Magnetic resonance imaging (MRI) is done on the lumbar spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and coverts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back pain is unsuccessful and more aggressive treatments are considered or following surgery. The physician reviews the images to look for specific information that may correlate to the patient's symptoms, such as abnormal spinal alignment; disease or injury of vertebral bodies; intervertebral disc herniation, degeneration, or dehydration; the size of the spinal canal to accommodate the cord and nerve roots; pinched or inflamed nerves; or any changes since surgery.
3% higher than market
MRI Spine Thoracic with and without Contrast
MRI Spine Thoracic with and without Contrast
Magnetic resonance imaging (MRI) is done on the cervical, thoracic, or lumbar spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and coverts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back/neck pain is unsuccessful and more aggressive treatments are considered or following surgery. Images are taken first without contrast and again after the administration of contrast to see the spinal area better. The physician reviews the images to look for specific information that may correlate to the patient's symptoms, such as abnormal spinal alignment; disease or injury of vertebral bodies; intervertebral disc herniation, degeneration, or dehydration; the size of the spinal canal to accommodate the cord and nerve roots; pinched or inflamed nerves; or any changes since surgery.
56% lower than market
MRI Spine Thoracic without Contrast
MRI Spine Thoracic without Contrast
Magnetic resonance imaging (MRI) is done on the thoracic spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and converts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back/neck pain is unsuccessful and more aggressive treatments are considered or following surgery.
32% lower than market
MRI scan bones of the eye, face, and/or neck with contrast
MRI scan bones of the eye, face, and/or neck with contrast
65% lower than market
MRI scan of abdomen with contrast
MRI scan of abdomen with contrast
80% lower than market
MRI scan of both breasts with contrast
MRI scan of both breasts with contrast
26% lower than market
MRI scan of chest
MRI scan of chest
50% lower than market
MRI scan of leg joint with contrast
MRI scan of leg joint with contrast
44% lower than market
MRI scan of leg with contrast
MRI scan of leg with contrast
57% lower than market
MRI scan of one breast with contrast
MRI scan of one breast with contrast
2% lower than market
MRI scan of pelvis with contrast
MRI scan of pelvis with contrast
58% lower than market
MRI scan of upper spinal canal with contrast
MRI scan of upper spinal canal with contrast
52% lower than market
Myocardial Perfusion, Tomographic
Myocardial Perfusion, Tomographic
Myocardial perfusion imaging is a nuclear medicine procedure used to evaluate the heart muscle and blood flow to the heart. An intravenous line is inserted into a vein in the hand or arm. ECG leads are placed and a blood pressure cuff is placed on the arm. The patient lies flat on a table in the procedure room for myocardial perfusion imaging performed at rest. For a stress study, the patient is either on a treadmill or bike or an injection of a pharmacologic agent is administered to stress the heart. A radionuclide, also called a tracer, is injected into the intravenous line and allowed to circulate. The radionuclide localizes in healthy heart tissue. Ischemic heart tissue does not absorb the radionuclide. Images of the heart and great vessels are obtained using single photon emission computed tomography (SPECT). When SPECT images are obtained, the scanner rotates around the body to obtain images in multiple planes. The physician evaluates heart wall motion to determine how effective the heart muscle is in pumping blood through the heart and to the peripheral vascular system. Ejection fraction, which is the percentage of blood pumped out of the heart to the peripheral vascular system, is measured using either a first pass or gated technique. In a first pass technique, images are obtained as the blood circulates through the heart during the first pass of the radionuclide. In a gated technique, a series of images are obtained between heart beats. Using electrical signals from the heart, the camera captures a series of images as the heart rests, creating very sharp, high resolution images. Additional images are obtained as needed. The physician reviews the images, calculates the ejection fraction and quantifies other parameters of heart function based on the distribution of the radionuclide. The physician then provides a written report of findings.
55% lower than market
Nuclear Medicine Study of Heart Wall Motion at Rest or with Stress
Nuclear Medicine Study of Heart Wall Motion at Rest or with Stress
Cardiac blood pool imaging using scintigraphy and a radiolabeled isotope tracer is performed to evaluate how effective the heart is at pumping blood; to assess cardiac wall motion; measure the size and shape of the heart chambers; and monitor ventricular systolic and diastolic function and ejection fraction. A comparison of the heart muscle at rest and during stress allows for quantitative information to be obtained in a single study. The patient is positioned on the imaging table and cardiac electrodes are placed for continuous electrocardiogram (ECG) tracing. The gamma camera is positioned over the chest and the ECG and camera are interfaced. An intravenous line is established and the radiolabeled isotope tracer is injected and allowed to circulate. Scanning captures the radioactive energy emitted and converts it into an image. Planar views of the heart and great vessels are typically obtained in up to three directions to assess different areas of the heart. In a gated equilibrium test, images are taken only at specific phases of the cardiac cycle, such as between heartbeats, with the image recording set, or gated, by the ECG waveforms. When assessing a patient at rest, no additional steps are necessary. To obtain a study during stress, the patient may be placed on a treadmill or exercise bicycle or injected with an appropriate pharmacological compound to stress the heart. The physician reviews the images, calculates the ejection fraction, and may quantify other parameters of heart function based on the distribution of the radionuclide. The physician then provides a written report of findings.
49% lower than market
Nuclear Medicine Study of Lung Ventilation and Blood Circulation in the Lungs
Nuclear Medicine Study of Lung Ventilation and Blood Circulation in the Lungs
Pulmonary nuclear imaging studies are performed to evaluate lung function. There are two components of lung function, ventilation and perfusion. Ventilation refers to the ability of air to reach all areas of the lung. Perfusion refers to the circulation of blood throughout lung tissue. Nuclear studies use radioactive tracers to highlight lung structures and blood flow.
50% lower than market
Nuclear medicine imaging of thyroid
Nuclear medicine imaging of thyroid
66% lower than market
Nuclear medicine study of blood circulation in the lungs
Nuclear medicine study of blood circulation in the lungs
56% lower than market
Nuclear medicine study of radioactive material distribution
Nuclear medicine study of radioactive material distribution
61% lower than market
Parathyroid Planar Imaging
Parathyroid Planar Imaging
Parathyroid planar imaging is obtained following intravenous administration of the radiopharmaceutical TC-99 sestamibi. Initial planar images are obtained shortly after administration of the radiopharmaceutical to evaluate any increased radiotracer uptake in the parathyroid tissue as compared to the thyroid tissue. Additional images are obtained approximately 2 hours later to evaluate for any retained radiotracer in the parathyroids. If subtraction studies are performed, a second radiopharmaceutical taken up only by the thyroid gland (I-123 or TC-99 pertechnetate) is administered. Subtraction images of the parathyroid glands are then obtained. Multiple imaging modalities are often used to diagnose parathyroid disease. Recent advances in parathyroid planar imaging has combined 99mTc-sestamibi with SPECT and concurrently acquired CT to improve sensitivity by combining anatomic and functional information.
19% lower than market
Radiologic exam, spine, entire thoracic and lumbar, including skull, cervical and sacral spine; 2 or 3 views
Radiologic exam, spine, entire thoracic and lumbar, including skull, cervical and sacral spine; 2 or 3 views
Approximately equal to market
Radiologic examination, abdomen; 3 or more views
Radiologic examination, abdomen; 3 or more views
25% lower than market
Radiologic examination, chest; 3 views
Radiologic examination, chest; 3 views
27% lower than market
Radiologic examination, chest; 4 or more views
Radiologic examination, chest; 4 or more views
8% lower than market
Radiologic examination, femur; 1 view
Radiologic examination, femur; 1 view
10% lower than market
Radiological supervision and interpretation X-ray of bile and/or pancreatic ducts during surgery
Radiological supervision and interpretation X-ray of bile and/or pancreatic ducts during surgery
59% lower than market
Radiological supervision and interpretation X-ray of urinary bladder and urethra, voiding
Radiological supervision and interpretation X-ray of urinary bladder and urethra, voiding
61% lower than market
Radiological supervision and interpretation X-ray of urinary bladder, minimum of 3 views
Radiological supervision and interpretation X-ray of urinary bladder, minimum of 3 views
74% lower than market
Radiological supervision and interpretation of CT guidance for needle insertion
Radiological supervision and interpretation of CT guidance for needle insertion
75% lower than market
Radiological supervision and interpretation of imaging of previous placed shunt
Radiological supervision and interpretation of imaging of previous placed shunt
18% lower than market
Screening Mammography, Bilateral, with CAD
Screening Mammography, Bilateral, with CAD
Bilateral screening mammography is done with computer-aided lesion detection (CAD), when performed. Mammography is the radiographic imaging of the breast using low-dose ionizing radiation. The x-rays used in mammography have a longer wavelength than those typically used for bone imaging. A screening mammogram is done on asymptomatic women for early breast cancer detection when there are no known palpable masses. This is done on both breasts with two views taken on each side. The breast is compressed between planes on a machine dedicated strictly to mammography. This evens out the dense tissue and holds the breast still for a better quality image. Computer-aided detection uses algorithm analysis of the image data obtained from the mammographic films, with or without digitization of the radiographic images. The mammographic picture of the breast is used by scanning the x-ray film with a laser beam, usually converting the scanned image of the analog film into digital data for the computer first, then employing a methodical, step-by-step pattern of analyzing the data on video display for unusual or suspicious areas.
3% higher than market
Screening digital breast tomosynthesis, bilateral
Screening digital breast tomosynthesis, bilateral
Digital screening mammogram
37% lower than market
Stomach emptying study
Stomach emptying study
7% higher than market
Thyroid Update and Scan
Thyroid Update and Scan
Thyroid imaging, also referred to as a thyroid scan, is a type of nuclear medicine study that is used to determine the size, shape and position of the thyroid. Radioactive iodine isotopes are administered orally in the form of a liquid or capsule or intravenously. If the radioactive tracer is administered orally the imaging procedure is performed several hours or up to 24 hours later. If the radioactive tracer is administered intravenously, the imaging procedure is performed approximately 30 minutes later. The patient positioned supine on an exam table with the head tipped back and a series of images of the thyroid gland are obtained using a gamma camera. Images of the thyroid vasculature may also be obtained. The images are reviewed by the physician and a written report of findings provided. Thyroid imaging may be performed in conjunction with thyroid uptake. Thyroid uptake is performed to evaluate thyroid gland function. Single or multiple uptake measurements may be obtained to determine how much iodine is absorbed by the thyroid gland and how quickly. Radioactive iodine isotopes (I-123 or I-131) are administered orally in liquid or capsule form approximately 4 hours before the thyroid uptake imaging is performed. A stationary probe is positioned over the thyroid gland in the neck and images are obtained. A second thyroid uptake determination is typically performed 24 hours after the administration of the iodine. Additional images may be obtained following the administration of substances that stimulate and/or suppress thyroid function. The images are then reviewed by the physician and written interpretation of findings provided.
17% lower than market
Transthoracic echocardiography with contrast, or without contrast followed by with contrast, real-time with image documentation (2d), includes m-mode recording, when performed, complete, with spectral doppler echocardiography
Transthoracic echocardiography with contrast, or without contrast followed by with contrast, real-time with image documentation (2d), includes m-mode recording, when performed, complete, with spectral doppler echocardiography
76% lower than market
Ultrasound Abdomen - Complete
Ultrasound Abdomen - Complete
A real time abdominal ultrasound is performed with image documentation. The patient is placed supine. Acoustic coupling gel is applied to the skin of the abdomen. The transducer is pressed firmly against the skin and swept back and forth over the abdomen and images obtained. The ultrasonic wave pulses directed at the abdomen are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the abdomen and provides a written interpretation.
13% higher than market
Ultrasound Abdomen - Limited
Ultrasound Abdomen - Limited
A real time abdominal ultrasound is performed with image documentation. The patient is placed supine. Acoustic coupling gel is applied to the skin of the abdomen. The transducer is pressed firmly against the skin and swept back and forth over the abdomen and images obtained. The ultrasonic wave pulses directed at the abdomen are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the abdomen and provides a written interpretation.
Approximately equal to market
Ultrasound Behind Abdominal Cavity - Complete
Ultrasound Behind Abdominal Cavity - Complete
A real time retroperitoneal ultrasound is performed with image documentation. The patient is placed supine. Acoustic coupling gel is applied to the skin of the abdomen. The transducer is pressed firmly against the skin and swept back and forth over the abdomen and images obtained of the retroperitoneal area. The ultrasonic wave pulses directed at the retroperitoneum are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the retroperitoneum and provides a written interpretation.
20% lower than market
Ultrasound Behind Abdominal Cavity - Limited
Ultrasound Behind Abdominal Cavity - Limited
A real time retroperitoneal ultrasound is performed with image documentation. The patient is placed supine. Acoustic coupling gel is applied to the skin of the abdomen. The transducer is pressed firmly against the skin and swept back and forth over the abdomen and images obtained of the retroperitoneal area. The ultrasonic wave pulses directed at the retroperitoneum are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the retroperitoneum and provides a written interpretation.
59% lower than market
Ultrasound Blood Flow Outside the Brain
Ultrasound Blood Flow Outside the Brain
A vascular ultrasound study is performed to evaluate the extracranial arteries which include the common carotid and external carotid arteries. A duplex scan uses both B-mode and Doppler studies. A clear gel is placed on the skin over the arteries to be studied. A B-mode transducer is placed on the skin and real-time images of the artery are obtained. A Doppler probe within the B-mode transducer provides information on pattern and direction of blood flow in the artery. The B-mode transducer produces ultrasonic sound waves that move through the skin and bounce off the arteries when the probe is placed over the arteries at various locations and angles. The Doppler probe produces sound waves that bounce off blood cells moving within the artery. The reflected sound waves are sent to an amplifier that makes the sound waves audible. The pitch of the sound waves changes if there is reduced blood flow, or ceases altogether if a vessel is completely obstructed. A computer converts the sound waves to images that are overlaid with colors to produce video images showing the speed and direction of blood flow as well as any obstruction. Spectral Doppler analysis is performed to provide information on anatomy and hemodynamic function, including information on the presence of narrowing and plaque formation within the arteries. The physician reviews the duplex scan and provides a written interpretation of findings.
26% lower than market
Ultrasound Guidance for Insertion of Needle
Ultrasound Guidance for Insertion of Needle
Ultrasound guidance including imaging supervision and interpretation is performed for needle placement during a separately reportable biopsy, aspiration, injection, or placement of a localization device. A local anesthetic is injected at the site of the planned needle or localization device placement. A transducer is then used to locate the lesion, site of the planned injection, or site of the planned placement of the localization device. The radiologist constantly monitors needle placement with the ultrasound probe to ensure the needle is properly placed. The radiologist also uses ultrasound imaging to monitor separately reportable biopsy, aspiration, injection, or device localization procedures. Upon completion of the procedure, the needle is withdrawn and pressure applied to control bleeding. A dressing is applied as needed. The radiologist then provides a written report of the ultrasound imaging component of the procedure.
2% lower than market
Ultrasound Head Neck
Ultrasound Head Neck
An ultrasound examination of soft tissues of the head and neck is performed with image documentation. The thyroid, parathyroid, or parotid glands and surrounding soft tissue may be examined. Ultrasound visualizes the body internally using sound waves far above human perception bounce off interior anatomical structures. As the sound waves pass through different densities of tissue, they are reflected back to the receiving unit at varying speeds and converted into pictures displayed on screen. A linear scanner or mechanical sector scanner is used to evaluate the shape, size, border, internal architecture, distal enhancement, color flow, and echogenicity of the soft tissue structures of the head and neck as well as any lesions or masses. The echogenicity is compared to that of the surrounding muscle tissue. The physician reviews the images and provides a written interpretation.
26% lower than market
Ultrasound Heart
Ultrasound Heart
The physician performs complete transthoracic real-time echocardiography with image documentation (2-D) including M-mode recording, if performed, with spectral Doppler and color flow Doppler echocardiography. Cardiac structure and dynamics are evaluated using a series of real-time tomographic images with multiple views recorded digitally or on videotape. Time-motion (M-mode) recordings are made as needed to allow dimensional measurement. Blood flow and velocity patterns within the heart, across valves and within the great vessels are evaluated by color flow Doppler. Normal blood flow patterns through these regions have a characteristic pattern defined by direction, velocity, duration, and timing throughout the cardiac cycle. Spectral Doppler by pulsed or continuous wave technique is used to evaluate antegrade flow through inflow and outflow tracts and cardiac valves. Multiple transducer positions or orientations may be required. The physician reviews the echocardiography images and orders additional images as needed to allow evaluation of any abnormalities. Digital or videotaped images are then reviewed by the physician. Abnormalities of cardiac structure or dynamics are noted. The extent of the abnormalities is evaluated and quantified. Any previous cardiac studies are compared to the current study and any quantitative or qualitative changes are identified. The physician provides an interpretation of the echocardiography with a written report of findings.
74% lower than market
Ultrasound Joint Soft Tissue - Complete
Ultrasound Joint Soft Tissue - Complete
Ultrasound, also referred to as sonography and echography, is a non-invasive imaging technique that uses high-frequency sound waves to evaluate tissues and structures. Nonvascular structures of the extremities that may be evaluated by ultrasound include periarticular soft tissue masses, muscles, tendons, nerves, ligaments, and joints. Common conditions that can be detected or evaluated by ultrasound include cystic lesions, solid tumors, abscesses, joint effusion, tendon tears, tendonitis, tenosynovitis, nerve compression, and stress fractures. Acoustic coupling gel is applied to the extremity to be examined. An ultrasound probe is placed against the skin and moved over the target joint area to be examined as sound waves pass through and bounce off extremity tissues and structures. The sound waves are reflected back to the receiving unit at varying speeds and converted into images. Longitudinal, transverse, and oblique images are obtained. The physician reviews the images and provides a written interpretation.
40% lower than market
Ultrasound Pelvis NonOB
Ultrasound Pelvis NonOB
A real time pelvic (non-obstetric) ultrasound is performed with image documentation to evaluate the uterus and cervix, ovaries, fallopian tubes, and bladder. Conditions evaluated include pelvic pain, abnormal bleeding, and palpable masses, such as ovarian cysts, uterine fibroids, or other pelvic masses. The patient presents with a full bladder. Acoustic coupling gel is applied to the skin of the lower abdomen. The transducer is pressed firmly against the skin and swept back and forth over the lower abdomen and images obtained of the uterus, ovaries, and surrounding pelvic structures. The ultrasonic wave pulses directed at the pelvic structures are imaged by recording the ultrasound echoes. Any abnormalities are evaluated. The physician reviews the ultrasound images and provides a written interpretation.
17% lower than market
Ultrasound Pelvis through Vagina
Ultrasound Pelvis through Vagina
A transvaginal ultrasound is performed to evaluate the non-pregnant uterus and other pelvic structures. Conditions that may be evaluated by transvaginal ultrasound include infertility, abnormal bleeding, unexplained pain, congenital anomalies of the ovaries and uterus, ovarian cysts and tumors, pelvic inflammatory disease, bladder abnormalities, and intrauterine device (IUD) location. The patient is asked to empty the bladder and then lies back with the feet in stirrups. A protective cover is placed over the transducer and acoustic coupling gel is applied. The transducer is inserted into the vagina. Images of the uterus, ovaries, and surrounding pelvic structures are obtained from different orientations of the transducer. The ultrasonic wave pulses directed at the pelvic structures are imaged by recording the ultrasound echoes. The uterus is examined and endometrial thickness is determined. The ovaries are examined and any ovarian masses are carefully evaluated. The bladder and other pelvic structures are examined and any abnormalities are noted. The physician reviews the transvaginal ultrasound images and provides a written interpretation.
14% higher than market
Ultrasound Pleural Effusion Chest
Ultrasound Pleural Effusion Chest
A real time ultrasound examination of chest including the mediastinum is performed with image documentation. Ultrasound may be used to evaluate mediastinum and surrounding soft tissue for lesions or masses. In children, ultrasound of the chest and mediastinum may also be used to definitively diagnose pneumonia, pleural effusion, diaphragmatic palsy, and bronchopulmonary sequestration following inconclusive findings on plain films. The patient is placed in a supine position with a pillow under the shoulders. The neck is extended slightly and the chin flexed. Acoustic coupling gel is applied to suprasternal and supraclavicular sites just lateral to the sternocleidomastoid bilaterally. The ultrasound probe is then used to obtain semicoronal, sagittal, parasagittal and oblique views of the soft tissues of the chest and mediastinum through suprasternal, paratracheal, and supraclavicular windows. Any abnormalities are evaluated to identify structure of origin, nature, internal architecture, and other characteristics that might provide a definitive diagnosis. The ultrasonic wave pulses directed at the soft tissues of the chest and mediastinum are imaged by recording the ultrasound echoes. The physician reviews the ultrasound images of the soft tissues of the chest and mediastinum and provides a written interpretation.
51% lower than market
Ultrasound Pregnant Uterus < 14 Weeks Pregnant
Ultrasound Pregnant Uterus < 14 Weeks Pregnant
A real time transabdominal obstetrical ultrasound is performed with image documentation to evaluate the fetus and the pregnant uterus and surrounding pelvic structures of the mother during the first trimester. The first trimester is defined as a gestation period of less than 14 weeks 0 days. Obstetric ultrasound is performed to establish viability of the embryo or fetus, to determine whether a multiple gestation exists, to determine fetal age using measurements of the gestational sac and fetus, to evaluate the position of the fetus and placenta, to evaluate visible fetal and placental anatomic structure, to evaluate amniotic fluid volume, to evaluate the maternal uterus and adnexa. The mother presents with a full bladder. Acoustic coupling gel is applied to the skin of the lower abdomen. The transducer is pressed firmly against the skin and swept back and forth over the lower abdomen and images obtained of the pregnant uterus, surrounding pelvic structures, and fetus. The ultrasonic wave pulses directed at the fetus, pregnant uterus, and surrounding pelvic structures of the mother are imaged by recording the ultrasound echoes. Any abnormalities are evaluated. The physician reviews the ultrasound images of the fetus, pregnant uterus, and maternal pelvic structures, and provides a written interpretation.
1% lower than market
Ultrasound Pregnant Uterus > 14 Weeks Pregnant
Ultrasound Pregnant Uterus > 14 Weeks Pregnant
A real time transabdominal obstetrical ultrasound is performed with image documentation to evaluate the fetus and the pregnant uterus and surrounding pelvic structures of the mother after the first trimester, which is defined as a gestation period equal to or greater than 14 weeks 0 days. Obstetric ultrasound is performed to establish viability of the fetus; to determine whether a multiple gestation exists; to determine fetal age using fetal measurements; to evaluate the position of the fetus and placenta; to survey fetal anatomy including intracranial, spinal, abdominal, and heart with four chamber evaluation; to identify umbilical cord insertion site; to evaluate amniotic fluid volume; and to evaluate the maternal uterus and adnexa if visible. The mother presents with a full bladder. Acoustic coupling gel is applied to the skin of the lower abdomen. The transducer is pressed firmly against the skin and swept back and forth over the lower abdomen and images obtained of the pregnant uterus, surrounding pelvic structures, and fetus. The ultrasonic wave pulses directed at the fetus, pregnant uterus, and surrounding pelvic structures of the mother are imaged by recording the ultrasound echoes. Any abnormalities are evaluated. The physician reviews the ultrasound images of the fetus, pregnant uterus, and maternal pelvic structures, and provides a written interpretation.
34% higher than market
Ultrasound Veins of Both Arms or Legs
Ultrasound Veins of Both Arms or Legs
A vascular ultrasound study is performed to evaluate veins in the extremities. A duplex scan uses both B-mode and Doppler studies. A clear gel is placed on the skin of the extremity over the region to be studied. A B-mode transducer is placed on the skin and real-time images of the veins are obtained. A Doppler probe within the B-mode transducer provides information on the pattern and direction of blood flow in the veins. The B-mode transducer produces ultrasonic sound waves that move through the skin and bounce off the veins when the probe is moved over the region being studied. The Doppler probe produces sound waves that bounce off blood cells moving within the veins. The reflected sound waves are sent to an amplifier that makes the sound waves audible. The pitch of the sound waves changes if there is reduced blood flow, or ceases altogether if a vessel is completely obstructed. A computer converts the sound waves to images that are overlaid with colors to produce video images showing the speed and direction of blood flow as well as any obstruction. Spectral Doppler analysis is performed to provide information on anatomy and hemodynamic function. The duplex scan may include a baseline evaluation followed by additional scans obtained with compression or using other maneuvers that alter blood flow. The physician reviews the duplex scan and provides a written interpretation of findings.
2% lower than market
Ultrasound guidance for accessing into blood vessel
Ultrasound guidance for accessing into blood vessel
71% lower than market
Ultrasound of Arteries of Both Legs
Ultrasound of Arteries of Both Legs
A vascular ultrasound study is performed to evaluate the lower extremity arteries or arterial bypass grafts. A duplex scan uses both B-mode and Doppler studies. A clear gel is placed on the skin of the lower extremity over the region to be studied. A B-mode transducer is placed on the skin and real-time images of the arteries or arterial bypass grafts are obtained. A Doppler probe within the B-mode transducer provides information on the pattern and direction of blood flow in the artery. The B-mode transducer produces ultrasonic sound waves that move through the skin and bounce off the arteries when the probe is moved over the region being studied. The Doppler probe produces sound waves that bounce off blood cells moving within the artery. The reflected sound waves are sent to an amplifier that makes the sound waves audible. The pitch of the sound waves changes if there is reduced blood flow, or ceases altogether if a vessel is completely obstructed. A computer converts the sound waves to images that are overlaid with colors to produce video images showing the speed and direction of blood flow as well as any obstruction. Spectral Doppler analysis is performed to provide information on anatomy and hemodynamic function, including information on the presence of narrowing and plaque formation within the arteries. The physician reviews the duplex scan and provides a written interpretation of findings.
72% lower than market
Ultrasound of Arteries of One Leg
Ultrasound of Arteries of One Leg
A vascular ultrasound study is performed to evaluate the lower extremity arteries or arterial bypass grafts. A duplex scan uses both B-mode and Doppler studies. A clear gel is placed on the skin of the lower extremity over the region to be studied. A B-mode transducer is placed on the skin and real-time images of the arteries or arterial bypass grafts are obtained. A Doppler probe within the B-mode transducer provides information on the pattern and direction of blood flow in the artery. The B-mode transducer produces ultrasonic sound waves that move through the skin and bounce off the arteries when the probe is moved over the region being studied. The Doppler probe produces sound waves that bounce off blood cells moving within the artery. The reflected sound waves are sent to an amplifier that makes the sound waves audible. The pitch of the sound waves changes if there is reduced blood flow, or ceases altogether if a vessel is completely obstructed. A computer converts the sound waves to images that are overlaid with colors to produce video images showing the speed and direction of blood flow as well as any obstruction. Spectral Doppler analysis is performed to provide information on anatomy and hemodynamic function, including information on the presence of narrowing and plaque formation within the arteries. The physician reviews the duplex scan and provides a written interpretation of findings.
29% lower than market
Ultrasound of pelvis
Ultrasound of pelvis
45% lower than market
Ultrasound of pregnant uterus, 1 or more fetus(es)
Ultrasound of pregnant uterus, 1 or more fetus(es)
Limited ultrasound performed to take a quick look at the baby during pregnancy
18% lower than market
Ultrasound of rectum
Ultrasound of rectum
73% lower than market
Ultrasound of transplanted kidney
Ultrasound of transplanted kidney
50% lower than market
Ultrasound re-evaluation of pregnant uterus, per fetus
Ultrasound re-evaluation of pregnant uterus, per fetus
Follow-up ultrasound test performed after the first trimester of pregnancy
56% lower than market
Ultrasound scan of abdominal, pelvic, and/or scrotal arterial inflow and venous outflow
Ultrasound scan of abdominal, pelvic, and/or scrotal arterial inflow and venous outflow
6% lower than market
Ultrasound scan of vena cava or groin graft or vessel blood flow
Ultrasound scan of vena cava or groin graft or vessel blood flow
1% higher than market
Ultrasound study of arteries and arterial grafts of both arms
Ultrasound study of arteries and arterial grafts of both arms
70% lower than market
Ultrasound study of arteries and arterial grafts of one arm or limited
Ultrasound study of arteries and arterial grafts of one arm or limited
56% lower than market
Vaginal Ultrasound of Pregnant Uterus
Vaginal Ultrasound of Pregnant Uterus
A real time transvaginal obstetrical ultrasound is performed with image documentation to evaluate the fetus, pregnant uterus, and surrounding maternal pelvic structures. Ultrasound visualizes the body internally using sound waves far above human perception bounced off interior anatomical structures. As the sound waves pass through different densities of tissue, they are reflected back to the receiving unit at varying speeds and converted into pictures displayed on screen. The patient is first asked to empty the bladder. A protective cover is placed over the transducer and acoustic coupling gel is applied to the cover. The transducer is inserted into the vagina and images of the fetus, pregnant uterus, and maternal structures are obtained from different orientations. Any abnormalities are evaluated. The physician reviews the images and provides a written interpretation.
20% lower than market
Whole Body Bone Scan
Whole Body Bone Scan
Bone and/or joint imaging using scintigraphy and a radiolabeled isotope tracer may be performed on patients who have unexplained skeletal pain suggestive of bone loss, infection, inflammation, or injury and traditional radiographics (planar x-rays) have failed to provide a diagnosis. An intravenous line is established and the radiolabeled isotope tracer is injected directly into the circulatory system. When inflammation is suspected, a blood sample is drawn and centrifuged to separate white blood cells (WBCs), which are then tagged with radioactive calcium and injected back into the patient. After a prescribed period of time, the patient is positioned on the imaging table with the gamma camera over the body. Scanning is performed at specific intervals and the radioactive energy emitted is converted into an image. The physician interprets the bone and/or joint imaging study and provides a written report of the findings.
16% lower than market
X-Ray Ankle, 2 Views
X-Ray Ankle, 2 Views
A radiologic examination of the ankle images the bones of the distal lower extremities including the tibia, fibula, and talus. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Ankle x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views of the ankle include front to back anteroposterior (AP), lateral (side), oblique (semi-prone position with body and leg partially rotated), and stress study with traction placed on the joint manually.
27% lower than market
X-Ray Ankle, 3 Views
X-Ray Ankle, 3 Views
A radiologic examination of the ankle images the bones of the distal lower extremities including the tibia, fibula, and talus. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Ankle x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views of the ankle include front to back anteroposterior (AP), lateral (side), oblique (semi-prone position with body and leg partially rotated), and stress study with traction placed on the joint manually.
26% lower than market
X-Ray Both Hips and Pelvis, 2 Views
X-Ray Both Hips and Pelvis, 2 Views
A radiologic examination is done on both the left and the right hip, which may also include the pelvis. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, infection, or tumor. Hip standard views that are taken most frequently include the front to back anteroposterior view taken with the patient lying supine and the legs straight, rotated slightly inward; the lateral ‘frog-leg’ view, taken with the hips flexed and abducted and the knees flexed with the soles of the feet placed together; a cross table view with the unaffected hip and knee flexed at a 90 degree angle out of the way and the beam aimed perpendicular to the long axis of the femur on the affected side. Another type of lateral view is taken with the hip flexed 45 degrees and abducted 45 degrees and the beam aimed perpendicular to the table. A front to back view of the hips in a pelvic view is often taken with the patient supine and both legs rotated slightly inward about 15 degrees.
63% lower than market
X-Ray Collar Bone
X-Ray Collar Bone
A complete radiologic examination of the clavicle is performed to determine fractures or dislocations. The most common type of fracture involves the middle third of the clavicle, followed by the lateral third distal to the coracoclavicular ligament. The least common type of clavicular fracture involves the proximal third. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. Radiographs are taken according to the suspected location of the injury. Standard evaluation includes an anteroposterior view focused on the midshaft wide enough to assess the acromioclavicular and sternoclavicular joints. Oblique views are also obtained with a cephalic tilt of 20-60 degrees.
30% lower than market
X-Ray Colon with Air Contrast and High Density Barium
X-Ray Colon with Air Contrast and High Density Barium
A radiologic examination of the colon (large intestine) images the right ascending, transverse, left descending, and sigmoid colon, as well as the rectum; it may also include the appendix and a portion of the distal small intestine. X-ray imaging uses indirect ionizing radiation to take pictures of non-uniform material, such as human tissue, because of its different density and composition, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. A radiologic examination of the colon may be used to diagnose tumors, inflammatory bowel disease such as Crohn's disease and ulcerative colitis, irritable bowel syndrome, obstruction, abnormal position or configuration of the organ including Hirschsprung disease in children. Patients may present with symptoms such as weight loss, blood in the stool, abdominal pain, a change in bowel habits, diarrhea, and/or constipation. A radiologic examination of the colon will often begin with a front to back anteroposterior (AP) scout film obtained in erect or supine position to verify adequate colonic preparation for the study. A small tube is inserted into the rectum and high density barium contrast is instilled via gravity. The patient may be turned in varying positions to facilitate the passage of contract throughout the large intestine. The radiologist visualizes the colon and directly observes function using fluoroscopy and obtains spot films as indicated. The barium is then drained and air is used to insufflate the colon to complete the study. Glucagon may be administered intravenously to induce colonic hypotonia and reduce pain and spasms associated with colon distension during the procedure.
51% lower than market
X-Ray Elbow, 2 Views
X-Ray Elbow, 2 Views
A radiologic examination of the elbow is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. X-rays of the elbow are usually considered necessary to assess for fractures or dislocations when the normal range of motion for extension, flexion, supination, and pronation cannot be carried out. Most acute disruptions of the elbow joint can be diagnosed by conventional x-ray examination, with the minimum number of views including the front to back anteroposterior projection with the elbow in as full extension as possible, and the side, or lateral image taken in flexion. A complete series of images also includes an oblique view of the radial head-capitellar image to help diagnose suspected subtle fractures involving the radial head or in cases of acute pain and trauma. The patient needs to be able to hold the elbow in full extension for the front view and in 90 degree flexion for the oblique and lateral views as much as possible.
3% higher than market
X-Ray Elbow, 3 Views
X-Ray Elbow, 3 Views
A radiologic examination of the elbow is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. X-rays of the elbow are usually considered necessary to assess for fractures or dislocations when the normal range of motion for extension, flexion, supination, and pronation cannot be carried out. Most acute disruptions of the elbow joint can be diagnosed by conventional x-ray examination, with the minimum number of views including the front to back anteroposterior projection with the elbow in as full extension as possible, and the side, or lateral image taken in flexion. A complete series of images also includes an oblique view of the radial head-capitellar image to help diagnose suspected subtle fractures involving the radial head or in cases of acute pain and trauma. The patient needs to be able to hold the elbow in full extension for the front view and in 90 degree flexion for the oblique and lateral views as much as possible.
27% lower than market
X-Ray Esophagus
X-Ray Esophagus
Oral contrast material is swallowed and the passage of the contrast is observed fluoroscopically as it passes through the pharynx and/or esophagus. Once the lumen of the pharynx and/or esophagus is completely coated with contrast material, still radiographic images are obtained. The physician reviews the images, notes any abnormalities, and provides a written interpretation of the findings.
52% lower than market
X-Ray Femus, 2 Views
X-Ray Femus, 2 Views
A radiologic examination of the femur is done between the hip and the knee. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, conditions such as fractures, dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, and cysts or tumors. X-rays may also be used to determine whether the femur is in satisfactory alignment following fracture treatment. Femur standard views that are taken most frequently include the front to back anteroposterior view and the lateral view from the side.
19% lower than market
X-Ray Fingers, 2 Views
X-Ray Fingers, 2 Views
A radiologic examination of the finger(s) is done with at least 2 different projections taken. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, interphalangeal (IP) joint dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, or tumors. The posteroanterior projection is taken with the palm down flat, fingers extended, and slightly apart to show the metacarpals, phalanges, and IP joints of the target finger(s). Anteroposterior views are taken with the back of the hand placed on the film and the x-ray beam going from palmar to dorsal direction. Lateral views are taken with the ulnar side of the hand on the film cassette and the fingers spread apart to avoid overlap, sometimes supported from underneath. Oblique views can be obtained with the hand placed palm down and the radial side rotated 45 degrees up away from the surface, with the fingers extended and spread apart.
8% lower than market
X-Ray Foot, 2 Views
X-Ray Foot, 2 Views
A radiologic examination of the foot images the bones of the distal lower extremity and may include the tibia, fibula, talus, calcaneus, cuboid, navicular, cuneiform, metatarsals, and phalanges. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Foot x-rays may also be used to determine whether there is satisfactory alignment of foot bones following fracture treatment. Standard views of the foot include top to bottom dorsal planter (DP), lateral (side), oblique (semi-prone position with body and leg partially rotated), and stress study with traction placed on the joint manually.
11% lower than market
X-Ray Foot, 3 Views
X-Ray Foot, 3 Views
A radiologic examination of the foot images the bones of the distal lower extremity and may include the tibia, fibula, talus, calcaneus, cuboid, navicular, cuneiform, metatarsals, and phalanges. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Foot x-rays may also be used to determine whether there is satisfactory alignment of foot bones following fracture treatment. Standard views of the foot include top to bottom dorsal planter (DP), lateral (side), oblique (semi-prone position with body and leg partially rotated), and stress study with traction placed on the joint manually.
14% lower than market
X-Ray Forearm, 2 Views
X-Ray Forearm, 2 Views
A radiologic examination of the forearm is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. Frontal views, or back to front (PA) views and lateral views are necessary to show the radius and ulna and assess the extent and direction of injury. Since the radius and ulna are anatomically connected at both ends of the bones with ligaments, the two bones function in a manner that makes the forearm considered as a single unit when assessing injury. The two standard views taken for x-ray examination of the forearm include the anteroposterior (AP) view, and the lateral view.
11% lower than market
X-Ray Hand, 2 Views
X-Ray Hand, 2 Views
A radiologic examination of the hand is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, or tumors. Hand x-rays are also used to help determine the 'bone age' of children and assess whether any nutritional or metabolic disorders may be interfering with proper development. The posteroanterior projection is taken with the palm down flat and may show not only the metacarpals, phalanges, and interphalangeal joints, but the carpal bones, radius, and ulna as well. Lateral views may be taken with the hand placed upright, resting upon the ulnar side of the palm and little finger with the thumb on top, ideally with the fingers supported by a sponge and splayed to avoid overlap. Oblique views can be obtained with the hand placed palm down and rolled slightly to the outside with the fingertips still touching the film surface. The beam is angled perpendicular to the cassette for oblique projections and aimed at the middle finger metacarpophalangeal joint.
17% lower than market
X-Ray Hand, 3 Views
X-Ray Hand, 3 Views
A radiologic examination of the hand is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, or tumors. Hand x-rays are also used to help determine the 'bone age' of children and assess whether any nutritional or metabolic disorders may be interfering with proper development. The posteroanterior projection is taken with the palm down flat and may show not only the metacarpals, phalanges, and interphalangeal joints, but the carpal bones, radius, and ulna as well. Lateral views may be taken with the hand placed upright, resting upon the ulnar side of the palm and little finger with the thumb on top, ideally with the fingers supported by a sponge and splayed to avoid overlap. Oblique views can be obtained with the hand placed palm down and rolled slightly to the outside with the fingertips still touching the film surface. The beam is angled perpendicular to the cassette for oblique projections and aimed at the middle finger metacarpophalangeal joint.
10% lower than market
X-Ray Heel, 2 Views
X-Ray Heel, 2 Views
A radiologic examination of the calcaneus images the bones of the distal lower extremity and usually includes the tibia, fibula, and talus. A radiologic examination of the toe(s) (phalanges) will usually include the metatarsals. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Calcaneus and toe(s) x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views to image the calcaneus include lateral (side) and axial (supine with foot dorsiflexed). Common views to image the toe(s) include top to bottom dorsal planter (DP) and oblique (supine with leg rotated medially to image the 1st, 2nd, and 3rd digits and laterally to image the 4th and 5th digits).
6% lower than market
X-Ray Hip and Pelvis, 1 View
X-Ray Hip and Pelvis, 1 View
A radiologic examination of the hip is done on either the left or the right side, which may also include the pelvis. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, infection, or tumor. Hip standard views that are taken most frequently include the front to back anteroposterior view taken with the patient lying supine and the legs straight, rotated slightly inward; the lateral ‘frog-leg’ view, taken with the hips flexed and abducted and the knees flexed with the soles of the feet placed together; a cross table view with the unaffected hip and knee flexed at a 90 degree angle out of the way and the beam aimed perpendicular to the long axis of the femur on the affected side. Another type of lateral view is taken with the hip flexed 45 degrees and abducted 45 degrees and the beam aimed perpendicular to the table.
8% lower than market
X-Ray Hip and Pelvis, 2 Views
X-Ray Hip and Pelvis, 2 Views
A radiologic examination of the hip is done on either the left or the right side, which may also include the pelvis. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, infection, or tumor. Hip standard views that are taken most frequently include the front to back anteroposterior view taken with the patient lying supine and the legs straight, rotated slightly inward; the lateral ‘frog-leg’ view, taken with the hips flexed and abducted and the knees flexed with the soles of the feet placed together; a cross table view with the unaffected hip and knee flexed at a 90 degree angle out of the way and the beam aimed perpendicular to the long axis of the femur on the affected side. Another type of lateral view is taken with the hip flexed 45 degrees and abducted 45 degrees and the beam aimed perpendicular to the table.
5% lower than market
X-Ray Knee, 1-2 Views
X-Ray Knee, 1-2 Views
A radiologic examination of the knee images the femur, tibia, fibula, patella, and soft tissue. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Knee x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views of the knee include front to back anteroposterior (AP), lateral (side), and back to front posteroanterior (PA) with variations in the flexion of the joint, and weight bearing and non-weight bearing postures.
21% lower than market
X-Ray Knee, 3 Views
X-Ray Knee, 3 Views
A radiologic examination of the knee images the femur, tibia, fibula, patella, and soft tissue. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Knee x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views of the knee include front to back anteroposterior (AP), lateral (side), and back to front posteroanterior (PA) with variations in the flexion of the joint, and weight bearing and non-weight bearing postures.
22% lower than market
X-Ray Knee, 4 or More Views
X-Ray Knee, 4 or More Views
A radiologic examination of the knee images the femur, tibia, fibula, patella, and soft tissue. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Knee x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views of the knee include front to back anteroposterior (AP), lateral (side), and back to front posteroanterior (PA) with variations in the flexion of the joint, and weight bearing and non-weight bearing postures.
47% lower than market
X-Ray Lower Leg, 2 Views
X-Ray Lower Leg, 2 Views
A radiologic examination of the tibia and fibula images the bones of the distal lower extremities and may include the knee and ankle joints. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Tibia and fibula x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views of the tibia and fibula include front to back anteroposterior (AP) and lateral (side).
6% lower than market
X-Ray Lower Sacral Spine, 2-3 Views
X-Ray Lower Sacral Spine, 2-3 Views
A radiologic exam is done of the lumbosacral spine. Frontal, posteroanterior, and lateral views are the most common projections taken. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
34% lower than market
X-Ray Lower Sacral Spine, 4 or More Views
X-Ray Lower Sacral Spine, 4 or More Views
A radiologic exam is done of the lumbosacral spine. Frontal, posteroanterior, and lateral views are the most common projections taken. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
25% lower than market
X-Ray Middle Spine, 3 Views
X-Ray Middle Spine, 3 Views
A radiologic exam is done of the thoracic spine. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. X-rays are taken of the thoracic spine to evaluate for back pain or suspected disease or injury. Films are taken from differing views that commonly include anteroposterior, lateral, posteroanterior, and a swimmer's view for the upper thoracic spine in which the patient reaches up with one arm and down with the other as if taking a swimming stroke.
3% lower than market
X-Ray Neck Soft Tissue
X-Ray Neck Soft Tissue
X-rays are taken to evaluate the soft tissue of the neck. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. Frontal and lateral views of the neck may be taken for better evaluation. The physician reviews the radiographs to determine any asymmetry or enlargement on one side or the other, the caliber and contour of the trachea, and any soft tissue swelling that may involve the adenoids, tonsils, epiglottis, or aryepiglottic folds.
37% lower than market
X-Ray Neck Spine, 2-3 Views
X-Ray Neck Spine, 2-3 Views
A radiologic exam is done of the cervical spine. Anteroposterior and lateral views are the most common projections taken. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
35% lower than market
X-Ray Pelvis, 1-2 Views
X-Ray Pelvis, 1-2 Views
A diagnostic x-ray examination of the pelvis is done. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. Bones appear white while soft tissue and fluids appear shades of grey. Pelvic x-rays are taken when the patient complains of pain and/or injury in the area of the pelvis or hip joints to assess for fractures and detect arthritis or bone disease. The patient is placed on a table and different views of the pelvis are taken by having the patient position the legs and feet differently, such as turning the feet inward to point at each other, or bending the knees outward with the soles of the feet together in a 'frog-leg' position.
33% lower than market
X-Ray Pelvis, 2 Views
X-Ray Pelvis, 2 Views
A radiologic examination of the sacrum and coccyx is done with at least 2 views obtained. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. Routine views include an anteroposterior (AP) or posteroanterior (PA) view of the sacrum, an AP or PA view of the coccyx, and lateral sacrum/coccyx views. For the sacral view, the patient's pelvis needs to be positioned correctly so the sacrum and sacroiliac joints are symmetrical. Because the coccyx has a forward curvature in relation to the sacrum, it is not automatically visualized when taking an AP view of the sacrum, and so another positioning is done for the coccyx. For lateral views, the patient stands sideways with feet shoulder width apart and arms crossed at the shoulders. Lateral imaging shows the entire 5th lumbar vertebra, the sacrum, and the coccyx. Good sacrum and coccyx imaging requires patient preparation with an empty bladder, clean colon, and removal of clothing in favor of wearing a gown. This is due to the difficulty these obstructions can cause in achieving a good radiographic image. Shielding is done for males, but is not possible for female patients.
14% lower than market
X-Ray Ribs One Side, 2 Views
X-Ray Ribs One Side, 2 Views
Rib radiographs (x-rays) are typically obtained following trauma to the rib cage to determine if fractures or other internal injuries are present. The most common views of the ribs are anteroposterior (AP) (frontal) and oblique. There are four positions used for oblique views: right anterior oblique, left anterior oblique, right posterior oblique, and left posterior oblique. Anterior oblique views are obtained with the patient standing and the chest rotated 45 degrees. The arm closest to the x-ray cassette is flexed with the hand resting on the hip. The opposite arm is raised as high as possible. The part of the chest farthest away from the x-ray cassette is the area that is being studied. Posterior oblique views are typically obtained only when the patient is too ill to stand or lay prone for anterior oblique views.
53% lower than market
X-Ray Sacroiliac Joints, 3 or More Views
X-Ray Sacroiliac Joints, 3 or More Views
A radiologic examination of the sacroiliac (SI) joints is performed. This is the area where the left and right winged pelvic bones join with the sacrum in the back to form the posterior portion of the pelvic ring. Because of its complex anatomy and irregular surfaces, the sacroiliac joint can be difficult to image. An anteroposterior (AP) view with the patient supine and knees or hips flexed, if possible, is typically done first for routine exam, along with left and right oblique views with the patient recumbent and rotated 25-30 degrees from the AP position. When imaging SI joints, the oblique views take the x-ray of the side that is up, although the patient is positioned for the opposite side down. Posteroanterior views may also be taken with the patient prone. X-rays are taken of the sacroiliac joints to help diagnose spondyloarthropathies in rheumatic disease, inflammatory lesions affecting the joint, sacroiliitis, ankylosing spondylitis, juvenile spondyloarthropathy, arthritis associated with inflammatory bowel disease, psoriatic arthritis, and reactive arthritis, as well as fractures or dislocations. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
52% lower than market
X-Ray Shoulder Blade
X-Ray Shoulder Blade
A complete radiologic examination of the scapula is performed. Fractures of the scapula are not very common and are sometimes found even when there is no clinical suspicion of injury. Parts of the scapula include the body, acromion, spine, coracoid, neck, and glenoid. The acromion and the coracoid form a 'Y' shape where they join with the body of the scapula. The lateral scapula view, also called the 'Y' view, is the standard view that may be taken by different techniques for a complete examination, including the anteroposterior (AP) or posteroanterior (PA) technique views, further dependent on arm position. With the patient in an oblique AP or PA position, lateral views may be taken with the hand on the hip, the arm by the side, and the hand of the target side placed on the opposite shoulder. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
21% lower than market
X-Ray Shoulder, 1 View
X-Ray Shoulder, 1 View
A radiologic examination of the shoulder is done. The shoulder is the junction of the humeral head and the glenoid of the scapula. Standard views include the anteroposterior (AP) view and the lateral 'Y' view, named because of the Y shape formed by the scapula when looking at it from the side. An axial view can also be obtained for further assessment when the patient is able to hold the arm in abduction. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
15% lower than market
X-Ray Shoulder, 2 Views
X-Ray Shoulder, 2 Views
A radiologic examination of the shoulder is done. The shoulder is the junction of the humeral head and the glenoid of the scapula. Standard views include the anteroposterior (AP) view and the lateral 'Y' view, named because of the Y shape formed by the scapula when looking at it from the side. An axial view can also be obtained for further assessment when the patient is able to hold the arm in abduction. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
4% lower than market
X-Ray Small Intestine without Contrast
X-Ray Small Intestine without Contrast
A radiologic examination of the small intestine images the duodenum, jejunum, and ileum. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. A radiologic examination of the small intestine may be used to diagnose ulcers, tumors, inflammation, scarring, obstruction, and abnormal position or configuration of the organs. Patients may present with symptoms such as weight loss, blood in the stool, abdominal pain, indigestion, or distention. A radiologic examination of the small intestine will often begin with a front to back anteroposterior (AP) scout film obtained in erect or supine position. The passage of contrast media such as barium that has been orally ingested or infused through an orally placed tube directly into the duodenum (enteroclysis) is visualized using fluoroscopy with spot films taken as indicated. Medication may be administered to speed up or delay gastrointestinal motility and the movement of contrast.
48% lower than market
X-Ray Toes, 2 Views
X-Ray Toes, 2 Views
A radiologic examination of the calcaneus images the bones of the distal lower extremity and usually includes the tibia, fibula, and talus. A radiologic examination of the toe(s) (phalanges) will usually include the metatarsals. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Calcaneus and toe(s) x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views to image the calcaneus include lateral (side) and axial (supine with foot dorsiflexed). Common views to image the toe(s) include top to bottom dorsal planter (DP) and oblique (supine with leg rotated medially to image the 1st, 2nd, and 3rd digits and laterally to image the 4th and 5th digits).
14% lower than market
X-Ray Upper Arm, 2 Views
X-Ray Upper Arm, 2 Views
A radiologic examination of the humerus is done with a minimum of 2 views taken. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The surgical neck of the humerus is the most common site of fracture. Shaft fractures are often associated with some kind of pathological lesion. X-rays of the humerus can be taken to detect deformities or lesions in the upper arm, such as cysts, tumors, late stage infection, or other diseases as well as a broken bone. The standard views of the humerus include the front to back anteroposterior view and the side, or lateral view.
6% higher than market
X-Ray Upper Spine, 4-5 Views
X-Ray Upper Spine, 4-5 Views
A radiologic exam is done of the cervical spine. Anteroposterior and lateral views are the most common projections taken. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
51% lower than market
X-Ray Wrist, 2 Views
X-Ray Wrist, 2 Views
A radiologic examination of the wrist is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, arthritis, foreign body, infection, or tumor. Wrist standard views include the front to back anteroposterior (AP) or back to front posteroanterior (PA) projection; the lateral view with the elbow flexed and the hand and wrist placed thumb up; and oblique views. Oblique views are obtained with the hand and wrist either supinated or pronated with the hand slightly flexed so the carpal target area lies flat, and then rotating the wrist 45 degrees externally or internally. A more specialized image may be obtained for assessing carpal tunnel. For the carpal tunnel view, the forearm is pronated with the palm down, and the wrist is hyperextended as far as possible by grasping the fingers with the opposite hand and gently hyperextending the joint until the metacarpals and fingers are in a near vertical position.
3% lower than market
X-Ray Wrist, 3 Views
X-Ray Wrist, 3 Views
A radiologic examination of the wrist is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, arthritis, foreign body, infection, or tumor. Wrist standard views include the front to back anteroposterior (AP) or back to front posteroanterior (PA) projection; the lateral view with the elbow flexed and the hand and wrist placed thumb up; and oblique views. Oblique views are obtained with the hand and wrist either supinated or pronated with the hand slightly flexed so the carpal target area lies flat, and then rotating the wrist 45 degrees externally or internally. A more specialized image may be obtained for assessing carpal tunnel. For the carpal tunnel view, the forearm is pronated with the palm down, and the wrist is hyperextended as far as possible by grasping the fingers with the opposite hand and gently hyperextending the joint until the metacarpals and fingers are in a near vertical position.
19% lower than market
X-Ray of Both Sides of Ribs, Including Chest, Minimum of 4 Views
X-Ray of Both Sides of Ribs, Including Chest, Minimum of 4 Views
Rib radiographs (x-rays) are typically obtained following trauma to the rib cage to determine if fractures or other internal injuries are present. The most common views of the ribs are anteroposterior (AP) (frontal) and oblique. There are four positions used for oblique views: right anterior oblique, left anterior oblique, right posterior oblique, and left posterior oblique. Anterior oblique views are obtained with the patient standing and the chest rotated 45 degrees. The arm closest to the x-ray cassette is flexed with the hand resting on the hip. The opposite arm is raised as high as possible. The part of the chest farthest away from the x-ray cassette is the area that is being studied. Posterior oblique views are typically obtained only when the patient is too ill to stand or lay prone for anterior oblique views.
53% lower than market
X-ray of bones of face, minimum of 3 views
X-ray of bones of face, minimum of 3 views
46% lower than market
X-ray of bones of nose, minimum of 3 views
X-ray of bones of nose, minimum of 3 views
18% lower than market
X-ray of eye bones, minimum of 4 views
X-ray of eye bones, minimum of 4 views
70% lower than market
X-ray of mandible, less than 4 views
X-ray of mandible, less than 4 views
8% lower than market
X-ray of paranasal sinus, complete, minimum of 3 views
X-ray of paranasal sinus, complete, minimum of 3 views
42% lower than market
X-ray of skull, complete, minimum of 4 views
X-ray of skull, complete, minimum of 4 views
32% lower than market
X-ray of skull, less than 4 views
X-ray of skull, less than 4 views
Approximately equal to market
X-ray of spine, 1 view
X-ray of spine, 1 view
64% lower than market
X-ray of upper digestive tract with contrast
X-ray of upper digestive tract with contrast
24% lower than market
X-ray of upper spine, 6 or more views
X-ray of upper spine, 6 or more views
41% lower than market
X-ray survey of forearm or wrist bone density
X-ray survey of forearm or wrist bone density
47% lower than market
Gonzales Healthcare Systems Patient Information Price List
INPATIENT CARDIOLOGY CHARGES
INPATIENT CARDIOLOGY CHARGES
Description
Variance
Heart Failure with major complications
Heart Failure with major complications
71% lower than market
Gonzales Healthcare Systems Patient Information Price List
INPATIENT GYNECOLOGY CHARGES
INPATIENT GYNECOLOGY CHARGES
Description