Patient Price Information List
Disclaimer: Memorial Hospital of Converse County determines its standard charges for patient items and services through the use of a chargemaster system, which is a list of charges for the components of patient care that go into every patient’s bill. These are the baseline rates for items and services provided at the Hospital. The chargemaster is similar in concept to the manufacturer’s suggested retail price (“MSRP”) on a particular product or good. The charges listed provide only a general starting point in determining the potential costs of an individual patient’s care at the Hospital. This list does not reflect the actual out-of-pocket costs that may be paid by a patient for any particular service, it is not binding, and the actual charges for items and services may vary.
Many factors may influence the actual cost of an item or service, including insurance coverage, rates negotiated with payors, and so on. Government payors, such as Medicare and Medicaid for example, do not pay the chargemaster rates, but rather have their own set rates that hospitals are obligated to accept. Commercial insurance payments are based on contract negotiations with payors and may or may not reflect the standard charges. The cost of treatment also may be impacted by variables involved in a patient’s actual care, such as specific equipment or supplies required, the length of time spent in surgery or recovery, additional tests, or any changes in care or unexpected conditions or complications that arise. Moreover, the foregoing list of charges for services only includes charges from the Hospital. It does not reflect the charges for physicians, such as the surgeon, anesthesiologist, radiologist, pathologist, or other physician specialists or providers who may be involved in providing particular services to a patient. These charges are billed separately.
Individuals with questions about their out-of-pocket costs of service and other financial information should contact the hospital or consider contacting their insurers for further information.
Memorial Hospital of Converse County Patient Information Price List
LOCAL MARKET HOSPITALS
In order to present a meaningful comparison, Memorial Hospital of Converse County has partnered with Hospital Pricing Specialists LLC to analyze current charges, based off CMS adjudicated claims through 3/31/2020. Memorial Hospital of Converse County's charges are displayed and compared with the local market charge, consisting of the following hospitals:
Campbell County Memorial Hospital
Gillette
WY
Cheyenne Regional Medical Cener
Cheyenne
WY
Community Hospital
Torrington
WY
Ivinson Memorial Hospital
Laramie
WY
Memorial Hospital of Carbon County
Rawlins
WY
Mountain View Regional Medical Hospital
Casper
WY
North Colorado Medical Center - Banner Health
Greeley
CO
Platte County Memorial Hospital
Wheatland
WY
SageWest Health Care at Riverton
Riverton
WY
UCHealth Medical Center of the Rockies
Loveland
CO
UCHealth Poudre Valley Hospital
Fort Collins
CO
UCHealth University of Colorado Hospital
Aurora
CO
Wyoming Medical Center
Casper
WY
Memorial Hospital of Converse County Patient Information Price List
INPATIENT ROOM AND BOARD DAILY CHARGES
INPATIENT ROOM AND BOARD DAILY CHARGES
Description
Variance
Private Room
Private Room
17% lower than market
Semi-Private Room
Semi-Private Room
15% lower than market
Intensive Care Unit
Intensive Care Unit
5% lower than market
Coronary Care Unit
Coronary Care Unit
59% higher than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT EMERGENCY DEPARTMENT CHARGES
OUTPATIENT EMERGENCY DEPARTMENT CHARGES
Emergency Department charges are based on the level of emergency care provided to our patients. The levels, with Level 1 representing basic emergency care, reflect the type of accommodations needed, the personnel resources, the intensity of care and the amount of time needed to provide treatment. The following charges do not include fees for drugs, supplies or additional ancillary procedures that may be required for a particular emergency treatment. They also do not include fees for Emergency Department physicians, who will bill separately for their services.
Description
Variance
Emergency Department Visit - Level 1
Emergency Department Visit - Level 1
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components: A problem focused history; A problem focused examination; and Straightforward medical decision making. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are self limited or minor.
12% lower than market
Emergency Department Visit - Level 2
Emergency Department Visit - Level 2
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components: An expanded problem focused history; An expanded problem focused examination; and Medical decision making of low complexity. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are of low to moderate severity.
6% lower than market
Emergency Department Visit - Level 3
Emergency Department Visit - Level 3
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components: An expanded problem focused history; An expanded problem focused examination; and Medical decision making of moderate complexity. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are of moderate severity.
35% lower than market
Emergency Department Visit - Level 4
Emergency Department Visit - Level 4
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components: A detailed history; A detailed examination; and Medical decision making of moderate complexity. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are of high severity, and require urgent evaluation by the physician or other qualified health care professionals but do not pose an immediate significant threat to life or physiologic function.
29% lower than market
Emergency Department Visit - Level 5
Emergency Department Visit - Level 5
Emergency department visit for the evaluation and management of a patient, which requires these 3 key components within the constraints imposed by the urgency of the patient's clinical condition and/or mental status: A comprehensive history; A comprehensive examination; and Medical decision making of high complexity. Counseling and/or coordination of care with other physicians, other qualified health care professionals, or agencies are provided consistent with the nature of the problem(s) and the patient's and/or family's needs. Usually, the presenting problem(s) are of high severity and pose an immediate significant threat to life or physiologic function.
34% lower than market
Emergency Critical Care, Each Additional 30 Minutes
Emergency Critical Care, Each Additional 30 Minutes
Critical care, evaluation and management of the critically ill or critically injured patient; each additional 30 minutes
61% lower than market
Emergency Critical Care, First 30 Minutes
Emergency Critical Care, First 30 Minutes
Critical care, evaluation and management of the critically ill or critically injured patient; first 30-74 minutes
46% lower than market
Initial hospital inpatient care, typically 70 minutes per day
Initial hospital inpatient care, typically 70 minutes per day
11% higher than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT PHYSICAL THERAPY CHARGES
OUTPATIENT PHYSICAL THERAPY CHARGES
The following charges reflect the most common services offered by our Physical Therapy department. Patients may have additional charges, depending on the services performed.
Description
Variance
Gait Training - 15 Minutes
Gait Training - 15 Minutes
Gait training is a therapeutic procedure that observes and educates an individual in the manner of walking including the rhythm, cadence, step, stride, and speed. The objective of gait training is to strengthen muscles and joints, improve balance and posture, and develop muscle memory. As the lower extremities are retrained for repetitive motion, the body also benefits from the exercise with increased endurance, improved heart/lung function, and reduced or improved osteoporosis. Gait training is an appropriate therapeutic procedure following brain and/or spinal cord injury, stroke, fracture of the pelvis and/or lower extremity, joint injury or replacement of the knee, hip, or ankle, amputation, and for certain musculoskeletal and/or neurological diseases. A treadmill fitted with a safety harness is initially used to ensure safe walking. As the patient gains strength and balance, step training and stair climbing is added to the treatment modality.
39% lower than market
PT Evaluation - Moderate Complexity
PT Evaluation - Moderate Complexity
A physical therapy evaluation or re-evaluation is performed. The physical therapist takes a history of the current complaint including onset of symptoms, comorbidities, changes since the onset, treatment received for the symptoms or condition, medications prescribed for it, and any other medications the patient is taking. A physical examination of body systems is done to assess physical structure and function, any activities or movements that exacerbate the symptoms, limit activity, or restrict participation in movement, as well as anything that helps to relieve the symptoms. The evaluation may involve provocative maneuvers or positions that increase symptoms; tests for joint flexibility and muscle strength; assessments of general mobility, posture, and core strength; evaluation of muscle tone; and tests for restrictions of movement caused by myofascial disorders. Following the history and physical, the therapist determines the patient's clinical presentation characteristics, provides a detailed explanation of the condition, identifies physical therapy treatment options, and explains how often and how long physical therapy modalities should be applied. The physical therapist will then develop a plan of care with clinical decision making based on patient assessment and/or measurable functional outcome. The plan of care may include both physical therapy in the clinic and exercises or changes in the home environment. Upon re-evaluation, the established care plan is reviewed and an interim history is taken requiring the use of standardized tests and measures. The patient's response to treatment is evaluated and the plan of care is revised based on the patient's measurable response.
38% lower than market
PT to Re-Educate Brain to Muscle Function (15 min)
PT to Re-Educate Brain to Muscle Function (15 min)
Therapeutic procedures for neuromuscular reeducation are used to develop conscious control of a single muscle or muscle group and heighten the awareness of the body's position in space, especially the position of the extremities when sitting or standing. Neuromuscular reeducation is employed during the recovery or regeneration stage following severe injury or trauma, cerebral vascular accident, or systemic neurological disease. The goal of therapy is improved range of motion (ROM), balance, coordination, posture, and spatial awareness. Techniques may include proprioceptive neuromuscular facilitation which uses diagonal contract-relax patterns of skeletal muscles to stimulate receptors in the joints that communicate body position to the brain via motor and sensory nerves. Feldenkrais is a method which observes the patient's habitual movement patterns and teaches new patterns based on efficient active or passive repetitive conditioning. Additional techniques that may be useful for neuromuscular reeducation are Bobath concept, which promotes motor learning and efficient motor control, and biomechanical ankle platform system (BAPS) boards.
43% lower than market
Physical Therapy 1 or More Regions (15 min)
Physical Therapy 1 or More Regions (15 min)
Manual therapies are skilled, specific, hands-on techniques usually performed by physical therapists, occupational therapists, chiropractors, osteopaths, and/or physiatrists to diagnose and treat soft tissue and joint problems. The goal of manual therapy is to modulate pain and induce relaxation, increase range of motion (ROM), facilitate movement, function, and stability, decrease inflammation, and improve muscle tone and extensibility. Tissue mobilization involves slow, controlled myofascial stretching using deep pressure to break up fibrous muscle tissue and/or connective tissue adhesions. Manipulation is a more forceful stretching of the myofascial tissue that takes the joint just beyond its restricted barrier. Manual lymphatic drainage is a type of light massage employed to reduce swelling by gentle movement of the skin in the direction of lymphatic flow. Manual traction involves the controlled counterforce of the therapist to induce asymptomatic strain by gently stretching muscle and/or connective tissue.
44% lower than market
Physical Therapy Exercise, 15 Minutes
Physical Therapy Exercise, 15 Minutes
Therapeutic exercise is the application of careful, graduated force to the body to increase strength, endurance, range of motion, and flexibility. Increased muscle strength is achieved by the deliberate overloading of a targeted muscle or muscle group and improved endurance is achieved by raising the intensity of the strengthening exercise to the targeted area(s) over a prolonged period of time. To maintain range of motion (ROM) and flexibility requires the careful movement and stretching of contractile and non-contractile tissue that may tighten with injury or neurological disease, causing weakness and/or spasticity. Therapeutic exercise can increase blood flow to the targeted area, reduce pain and inflammation, reduce the risk of blood clots from venous stasis, decrease muscle atrophy and improve coordination and motor control. Therapeutic exercise may be prescribed following acute illness or injury and for chronic conditions that affect physical activity or function.
40% lower than market
Physical Therapy, complex evaluation
Physical Therapy, complex evaluation
A physical therapy evaluation or re-evaluation is performed. The physical therapist takes a history of the current complaint including onset of symptoms, comorbidities, changes since the onset, treatment received for the symptoms or condition, medications prescribed for it, and any other medications the patient is taking. A physical examination of body systems is done to assess physical structure and function, any activities or movements that exacerbate the symptoms, limit activity, or restrict participation in movement, as well as anything that helps to relieve the symptoms. The evaluation may involve provocative maneuvers or positions that increase symptoms; tests for joint flexibility and muscle strength; assessments of general mobility, posture, and core strength; evaluation of muscle tone; and tests for restrictions of movement caused by myofascial disorders. Following the history and physical, the therapist determines the patient's clinical presentation characteristics, provides a detailed explanation of the condition, identifies physical therapy treatment options, and explains how often and how long physical therapy modalities should be applied. The physical therapist will then develop a plan of care with clinical decision making based on patient assessment and/or measurable functional outcome. The plan of care may include both physical therapy in the clinic and exercises or changes in the home environment. Upon re-evaluation, the established care plan is reviewed and an interim history is taken requiring the use of standardized tests and measures. The patient's response to treatment is evaluated and the plan of care is revised based on the patient's measurable response.
39% lower than market
Physical Therapy, standard evaluation - 20 minutes
Physical Therapy, standard evaluation - 20 minutes
A physical therapy evaluation or re-evaluation is performed. The physical therapist takes a history of the current complaint including onset of symptoms, comorbidities, changes since the onset, treatment received for the symptoms or condition, medications prescribed for it, and any other medications the patient is taking. A physical examination of body systems is done to assess physical structure and function, any activities or movements that exacerbate the symptoms, limit activity, or restrict participation in movement, as well as anything that helps to relieve the symptoms. The evaluation may involve provocative maneuvers or positions that increase symptoms; tests for joint flexibility and muscle strength; assessments of general mobility, posture, and core strength; evaluation of muscle tone; and tests for restrictions of movement caused by myofascial disorders. Following the history and physical, the therapist determines the patient's clinical presentation characteristics, provides a detailed explanation of the condition, identifies physical therapy treatment options, and explains how often and how long physical therapy modalities should be applied. The physical therapist will then develop a plan of care with clinical decision making based on patient assessment and/or measurable functional outcome. The plan of care may include both physical therapy in the clinic and exercises or changes in the home environment. Upon re-evaluation, the established care plan is reviewed and an interim history is taken requiring the use of standardized tests and measures. The patient's response to treatment is evaluated and the plan of care is revised based on the patient's measurable response.
35% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT CLINIC CHARGES
OUTPATIENT CLINIC CHARGES
Description
Variance
Established patient office visit, comprehensive visit
Established patient office visit, comprehensive visit
Established patient visit requiring a comprehensive history and examination, for a high complexity medical issue of moderate to high severity
67% lower than market
Hospital Outpatient Clinic Visit for Assessment and Management of a Patient
Hospital Outpatient Clinic Visit for Assessment and Management of a Patient
Hospital outpatient clinic visit for assessment and management of a patient
59% lower than market
New patient office or other outpatient visit, typically 20 minutes
New patient office or other outpatient visit, typically 20 minutes
13% lower than market
New patient office or other outpatient visit, typically 45 min
New patient office or other outpatient visit, typically 45 min
34% lower than market
New patient office visit, comprehensive visit
New patient office visit, comprehensive visit
New patient visit requiring a comprehensive history and examination, for a high complexity medical issue of moderate to high severity
63% lower than market
New patient office visit, standard
New patient office visit, standard
New patient visit requiring a problem-focused history and examination, for a straightforward medical issue of self-limited or minor severity
27% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT OCCUPATIONAL THERAPY CHARGES
OUTPATIENT OCCUPATIONAL THERAPY CHARGES
The following charges reflect the most common services offered by our Occupational Therapy department. Patients may have additional charges, depending on the services performed.
Description
Variance
Occupational Therapy Evaluation - Moderate Complexity
Occupational Therapy Evaluation - Moderate Complexity
An occupational therapy evaluation or re-evaluation is performed. Occupational therapy assists the patient in developing or regaining skills that allow independent functioning and enhance health and personal well-being. A patient history is taken that includes an occupational profile and medical and therapy history with review of records as well as an extensive review of physical, cognitive, or psychosocial elements related to current performance of daily activities. The occupational therapist evaluates the patient's physical functioning, mental, and/or neurobehavioral impairment and performs tests to identify functional limitations or performance deficits. Physical functioning is evaluated, including an evaluation of any musculoskeletal conditions that may impair function. The ability to perform basic activities of daily living such as dressing, bathing, mobility, and other activities for living independently, such as shopping, cooking, driving, or accessing public transportation are all assessed. Barriers in the home, school, work, and community environments are identified. The need for adaptive equipment is assessed. The occupational therapist develops a treatment plan using clinical decision making from the patient analysis, assessment data, comorbidities, and possible treatment options. During a re-evaluation, an interim history is taken; the patient's response to treatment is evaluated; and the plan of care is revised based on the patient's response to treatment, functional and medical status, and any changes in condition or environment that affect future interventions or goals.
30% lower than market
Occupational Therapy, complex evaluation
Occupational Therapy, complex evaluation
An occupational therapy evaluation or re-evaluation is performed. Occupational therapy assists the patient in developing or regaining skills that allow independent functioning and enhance health and personal well-being. A patient history is taken that includes an occupational profile and medical and therapy history with review of records as well as an extensive review of physical, cognitive, or psychosocial elements related to current performance of daily activities. The occupational therapist evaluates the patient's physical functioning, mental, and/or neurobehavioral impairment and performs tests to identify functional limitations or performance deficits. Physical functioning is evaluated, including an evaluation of any musculoskeletal conditions that may impair function. The ability to perform basic activities of daily living such as dressing, bathing, mobility, and other activities for living independently, such as shopping, cooking, driving, or accessing public transportation are all assessed. Barriers in the home, school, work, and community environments are identified. The need for adaptive equipment is assessed. The occupational therapist develops a treatment plan using clinical decision making from the patient analysis, assessment data, comorbidities, and possible treatment options. During a re-evaluation, an interim history is taken; the patient's response to treatment is evaluated; and the plan of care is revised based on the patient's response to treatment, functional and medical status, and any changes in condition or environment that affect future interventions or goals.
35% lower than market
Occupational Therapy, standard evaluation - 30 minutes
Occupational Therapy, standard evaluation - 30 minutes
An occupational therapy evaluation or re-evaluation is performed. Occupational therapy assists the patient in developing or regaining skills that allow independent functioning and enhance health and personal well-being. A patient history is taken that includes an occupational profile and medical and therapy history with review of records as well as an extensive review of physical, cognitive, or psychosocial elements related to current performance of daily activities. The occupational therapist evaluates the patient's physical functioning, mental, and/or neurobehavioral impairment and performs tests to identify functional limitations or performance deficits. Physical functioning is evaluated, including an evaluation of any musculoskeletal conditions that may impair function. The ability to perform basic activities of daily living such as dressing, bathing, mobility, and other activities for living independently, such as shopping, cooking, driving, or accessing public transportation are all assessed. Barriers in the home, school, work, and community environments are identified. The need for adaptive equipment is assessed. The occupational therapist develops a treatment plan using clinical decision making from the patient analysis, assessment data, comorbidities, and possible treatment options. During a re-evaluation, an interim history is taken; the patient's response to treatment is evaluated; and the plan of care is revised based on the patient's response to treatment, functional and medical status, and any changes in condition or environment that affect future interventions or goals.
36% lower than market
Self Care - Home Management Training - 15 Minutes
Self Care - Home Management Training - 15 Minutes
Self-care/home managemeThe patient receives one-on-one training to improve the ability to care for himself/herself and maintain independence. This may include training in activities of daily living (ADL), such as bed mobility, transfers, dressing, grooming, eating, bathing and toileting. The patient is given instruction on compensatory measures that can be taken to overcome any physical, mental or emotional disabilities. The patient receives training in how to adapt meal preparation to his/her specific needs and how to perform activities safely. The patient may also receive instruction in the use of assistive technology devices and adaptive equipment which includes any item used to improve the functional capability of the patient in the home and with ADL. This code is reported for each 15 minutes of one-on-one self-care/home management training designed to meet the specific needs of the patient.nt training, which includes instructions in the use of any assisting equipment.
33% lower than market
Therapeutic Activities Involving Functional Activities (15 min)
Therapeutic Activities Involving Functional Activities (15 min)
In a one-on-one physical therapy session, the provider instructs and assists the patient in therapeutic activities designed to address specific functional limitations. The therapeutic activities are specifically developed and modified for the patient. Dynamic/movement activities, also called kinetic activities, that are designed to improve functional performance such as lifting, bending, pushing, pulling, jumping and reaching are included in this service. For example, the patient may be given therapeutic activities to perform to improve the ability to sit, stand, and get out of bed after an injury without straining or risking reinjury. This code is reported for each 15 minutes of one-on-one therapeutic activity provided.
40% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT PULMONARY THERAPY CHARGES
OUTPATIENT PULMONARY THERAPY CHARGES
The following charges reflect the most common services offered by our Pulmonary Therapy department. Patients may have additional charges, depending on the services performed.
Description
Variance
Routine EKG - Minimum 12 Leads
Routine EKG - Minimum 12 Leads
An ECG is used to evaluate the electrical activity of the heart. The test is performed with the patient lying prone on the exam table. Small plastic patches are attached at specific locations on the chest, abdomen, arms, and/or legs. Leads (wires) from the ECG tracing device are then attached to the patches. A tracing is obtained of the electrical signals from the heart. Electrical activity begins in the sinoatrial node which generates an electrical stimulus at regular intervals, usually 60 to 100 times per minute. This stimulus travels through the conduction pathways to the sinoatrial node causing the atria to contract. The stimulus then travels along the bundle of His which divides into right and left pathways providing electrical stimulation of the ventricles causing them to contract. Each contraction of the ventricles represents one heart beat. The ECG tracing includes the following elements: P wave, QRS complex, ST segment, and T wave. The P wave, a small upward notch in the tracing, indicates electrical stimulation of the atria. This is followed by the QRS complex which indicates the ventricles are electrically stimulated to contract. The short flat ST segment follows and indicates the time between the end of the ventricular contraction and the T wave. The T wave represents the recovery period of the ventricles. The physician reviews, interprets, and provides a written report of the ECG recording taking care to note any abnormalities.
28% lower than market
Spirometry - medicated breathing procedure
Spirometry - medicated breathing procedure
Spirometry with bronchodilation responsiveness is a pulmonary function test that is used to help diagnose the cause of shortness of breath and to monitor existing pulmonary disease, such as chronic bronchitis, emphysema, pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), and asthma. The test is first performed without administration of a bronchodilator. A spirometry device consisting of a mouthpiece and tubing connected to a machine that records and displays results is used to perform the test. The patient inhales deeply and then exhales through the mouthpiece. Inhalation and exhalation measurements are first taken with the patient breathing normally. The patient is then instructed to perform rapid, forceful inhalation and exhalation. The spirometer records the volume of air inhaled, exhaled, and the length of time each breath takes. A bronchodilator medication is administered and the test is repeated. The test results are displayed on a graph that the physician reviews and interprets in a written report.
29% lower than market
Stress Test with EKG tracing
Stress Test with EKG tracing
An ECG is used to evaluate the electrical activity of the heart using treadmill, bicycle exercise, and/or pharmacologically induced stress. Small plastic patches are attached at specific locations on the chest, abdomen, arms, and/or legs. Leads (wires) from the stress ECG device are then attached to the patches. A baseline ECG is obtained. The exercise portion of the study is then initiated. Heart rate and blood pressure are monitored. Staged stress protocol is used and the patient's response to stress is monitored as the stress ECG is recorded. Unless contraindicated, exercise or pharmacological stress continues until the patient is unable to continue or until the target heart rate is achieved. Upon completion of the study, the stress ECG is reviewed and a written interpretation of findings is provided.
Approximately equal to market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT SPEECH THERAPY CHARGES
OUTPATIENT SPEECH THERAPY CHARGES
Description
Variance
Swallow Evaluation
Swallow Evaluation
An evaluation of the oral and pharyngeal phase of the swallowing function is performed in a patient who is suspected of having oropharyngeal dysphagia. The initial evaluation is typically performed by a dysphagia specialist, usually a speech-language pathologist. This evaluation is performed to determine whether more extensive studies are warranted. Swallowing function is divided into oral, pharyngeal, and esophageal phases. The oral and pharyngeal phases are made up of oral preparation for solid foods (not required for liquids or pureed foods), oral transfer, and initiation of the swallow. Both oral and pharyngeal movements are necessary in preparing, transferring, and swallowing food. The patient is given both solids and liquids to swallow. During oral preparation of solid food the ability of the tongue to move the food from side-to-side so that the solid can be chewed and prepared for swallowing is evaluated. Once the solid food is prepared and transferred to the back of the throat, the swallowing movements are evaluated. Propelling solids or liquids requires a complex set of movements including retraction of the base of the tongue, elevation of the hyolarynx, closure of the velopharyngeus, contraction of the pharynx, opening of the upper esophageal sphincter, and closure of the airway. The speech-language pathologist observes the patient to determine whether solids and liquids are being prepared, transferred, and propelled from the pharynx into the esophagus. A written report of findings is provided.
48% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT LABORATORY AND PATHOLOGY CHARGES
OUTPATIENT LABORATORY AND PATHOLOGY CHARGES
The following charges reflect our most common laboratory procedures. For all lab specimens collected via blood draw, the venipuncture will be charged separately.
Description
Variance
Acute hepatitis panel
Acute hepatitis panel
An acute hepatitis panel is obtained to detect and diagnose acute or chronic viral liver infections. Hepatitis A virus (HAV) is highly contagious but usually causes only a mild illness. HAV is found in contaminated food and water but may also be spread person to person by close physical contact. It does not cause a chronic infection and a vaccine is available. Hepatitis B virus (HBV) is found in blood and body fluids and is the most common hepatitis virus contracted. It is a chronic infection and a vaccine is available against HBV. Hepatitis C virus is also found in blood and body fluids, and is chronic, however no vaccine is yet available to protect against this virus. Tests in an acute hepatitis panel should include Hepatitis A antibody, IgM antibody (HAAb IgM Ab), Hepatitis B core antibody, IgM antibody (HBcAb IgM Ab), Hepatitis B surface antigen (HBsAg), and Hepatitis C antibody (by CIA or Interp). Hepatitis A Virus antibody, IgM develops 2-3 weeks post exposure and remains elevated for 2-6 months. Hepatitis B Virus core antibody, IgM is produced in response to the presence of Hepatitis B core antigen. It will be elevated with acute initial infection and during flare up of disease activity in chronic infection. Hepatitis B Virus surface antigen is a protein located on the surface of HBV. Elevated levels of HBsAg may be an early sign of exposure to the virus or indicate an acute or chronic infection. When testing for Hepatitis C antibody, it is not possible to distinguish whether elevated levels are due to active acute infection or a chronic disease state unless differentiated by further testing. A specimen is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative chemiluminescent immunoassay.
78% lower than market
Arterial Blood Gases Measurement
Arterial Blood Gases Measurement
A laboratory test is performed to measure one or more components of blood gases. The homeostatic acid-base balance is measured as blood pHùthe number of hydrogen ions (H+) dissolved in the blood. Partial pressure of carbon dioxide (pCO2) is the amount of carbon dioxide dissolved in the blood and reflects how well the lungs can move CO2 out of the body. Partial pressure of oxygen (pO2) is the level of oxygen dissolved in the blood and reflects the exchange of oxygen molecules in the alveoli. Bicarbonate (HCO3) is calculated from pH and pCO2 and is the metabolic component of acid-base balance reflecting the kidney's response to changes in pH. Oxygen saturation (O2 Sat) is the percent of hemoglobin that is carrying oxygen. Calculated O2 saturation uses a mathematical model to determine the percentage of hemoglobin that is carrying oxygen based on the level of pO2. Blood gas monitoring may be performed to evaluate lung function; detect an acid-base imbalance; monitor metabolic, respiratory, and kidney disorders; and evaluate the effectiveness of treatment. A blood sample is obtained by separately reportable venipuncture, heelstick, arterial, or umbilical cord draw.
3% higher than market
Bacterial Blood Culture
Bacterial Blood Culture
A blood sample is drawn and placed in a medium conducive to the growth of bacteria. Any bacteria present in the blood sample will then reveal themselves.
16% lower than market
Bacterial Culture for Aerobic Isolates
Bacterial Culture for Aerobic Isolates
Used if further testing is required from an anaerobic bacterial tissue culture in order to verify the results.
26% lower than market
Bacterial Culture, Any Source Blood
Bacterial Culture, Any Source Blood
A tissue sample is collected and placed in a medium conducive to the growth of bacteria. The culture is examined for the growth of bacteria that can survive without oxygen.
24% lower than market
Bacterial Culture, Any Source Except Urine, Blood, or Stool
Bacterial Culture, Any Source Except Urine, Blood, or Stool
A tissue sample besides blood, urine, or stool is collected and placed in a medium conducive to the growth of bacteria. The culture is examined for the growth of bacteria.
27% lower than market
Bilirubin level (Total)
Bilirubin level (Total)
A laboratory test is performed to measure total or direct bilirubin. Bilirubin is a pigmented waste product normally produced when red blood cells (RBCs) break down. Non-water soluble (unconjugated) bilirubin is carried on albumin to the liver where it attaches to sugar molecules to become conjugated. Conjugated (direct) bilirubin is water soluble and able to pass from the liver to the small intestine. Further breakdown of bilirubin occurs in the small intestine and it is eventually eliminated in the feces in the form of stercobilin. Total bilirubin is the sum of conjugated (direct) and unconjugated bilirubin. A test for either conjugated or direct bilirubin or total bilirubin may be ordered to diagnose and monitor liver disorders, hemolytic anemia, and newborn (physiologic) jaundice. A blood sample is obtained by separately reportable venipuncture or heel stick. Other body fluids, including cerebral spinal fluid, may be collected and tested for total bilirubin. Serum/plasma is tested using quantitative spectrophotometry.
68% lower than market
Blood Typing, ABO
Blood Typing, ABO
A blood specimen is tested to determine blood type (ABO) or Rh(D). Blood is grouped using an ABO blood typing system which identifies four blood types: type A, B, AB, or O. The blood sample is mixed with antibodies against Type A and B blood and then checked to determine if the blood cells agglutinate, or stick together. Type A blood has anti-B antibodies; type B blood has anti-A antibodies; type O blood has antibodies to both A and B; and type AB blood does not have anti-A or anti-B antibodies. Type A blood agglutinates when type B antibodies are introduced. Type B blood agglutinates when type A antibodies are introduced. Type O blood agglutinates when type A or B antibodies are introduced. Type AB blood does not agglutinate when type A or B antibodies are introduced. The blood is then back typed. Blood serum is mixed with blood that is known to be type A or B.
54% lower than market
Blood Typing, Rh (D)
Blood Typing, Rh (D)
A blood specimen is tested to determine blood type (ABO) or Rh(D). In Rh(D), blood is tested for Rh factor, which is an antigen on red blood cells. Blood is Rh+ if the antigen is present or Rh- if the antigen is absent. Blood is tested by mixing the blood sample with antibodies against Rh factor and then checking for agglutination. If agglutination occurs, the blood is Rh+. If the blood does not agglutinate, it is Rh-.
40% lower than market
Blood Unit Compatibility Test; Antiglobulin Technique
Blood Unit Compatibility Test; Antiglobulin Technique
22% lower than market
Blood glucose (sugar) measurement using reagent strip
Blood glucose (sugar) measurement using reagent strip
21% lower than market
Blood test, basic group of blood chemicals
Blood test, basic group of blood chemicals
A basic metabolic blood panel is obtained that includes ionized calcium levels along with carbon dioxide (bicarbonate) (CO2), chloride, creatinine, glucose, potassium, sodium, and urea nitrogen (BUN). A basic metabolic panel with measurement of ionized calcium may be used to screen for or monitor overall metabolic function or identify imbalances. Ionized or free calcium flows freely in the blood, is not attached to any proteins, and represents the amount of calcium available to support metabolic processes such as heart function, muscle contraction, nerve function, and blood clotting. Total carbon dioxide (bicarbonate) (CO2) level is composed of CO2, bicarbonate (HCO3-), and carbonic acid (H2CO3) with the primary constituent being bicarbonate, a negatively charged electrolyte that works in conjunction with other electrolytes, such as potassium, sodium, and chloride, to maintain proper acid-base balance and electrical neutrality at the cellular level. Chloride is also a negatively charged electrolyte that helps regulate body fluid and maintain proper acid-base balance. Creatinine is a waste product excreted by the kidneys that is produced in the muscles while breaking down creatine, a compound used by the muscles to create energy. Blood levels of creatinine provide a good measurement of renal function. Glucose is a simple sugar and the main source of energy for the body, regulated by insulin. When more glucose is available than is required, it is stored in the liver as glycogen or stored in adipose tissue as fat. Glucose measurement determines whether the glucose/insulin metabolic process is functioning properly. Both potassium and sodium are positively charged electrolytes that work in conjunction with other electrolytes to regulate body fluid, stimulate muscle contraction, and maintain proper acid-base balance and both are essential for maintaining normal metabolic processes. Urea is a waste product produced in the liver by the breakdown of protein from a sequence of chemical reactions referred to as the urea or Krebs-Henseleit cycle. Urea is taken up by the kidneys and excreted in the urine. Blood urea nitrogen, BUN, is a measure of renal function, and helps monitor renal disease and the effectiveness of dialysis.
37% higher than market
Blood test, clotting time
Blood test, clotting time
Prothrombin time (PT) measures how long it takes for blood to clot. Prothrombin, also called factor II, is one of the clotting factors made by the liver and adequate levels of vitamin K are needed for the liver to produce sufficient prothrombin. Prothrombin time is used to help identify the cause of abnormal bleeding or bruising; to check whether blood thinning medication, such as warfarin (Coumadin), is working; to check for low levels of blood clotting factors I, II, V, VII, and X; to check for low levels of vitamin K; to check liver function, to see how quickly the body is using up its clotting factors. The test is performed using electromagnetic mechanical clot detection. If prothrombin time is elevated and the patient is not on a blood thinning medication, a second prothrombin time using substitution plasma fractions, also referred to as a prothrombin time mixing study, may be performed. This is performed by mixing patient plasma with normal plasma using a 1:1 mix. The mixture is incubated and the clotting time is again measured. If the result does not correct, it may be indicative that the patient has an inhibitor, such as lupus anticoagulant. If the result does correct, the patient may have a coagulation factor deficiency.
20% higher than market
Blood test, comprehensive group of blood chemicals
Blood test, comprehensive group of blood chemicals
A comprehensive metabolic panel is obtained that includes albumin, bilirubin, total calcium, carbon dioxide, chloride, creatinine, glucose, alkaline phosphatase, potassium, total protein, sodium, alanine amino transferase (ALT) (SGPT), aspartate amino transferase (AST) (SGOT), and urea nitrogen (BUN). This test is used to evaluate electrolytes and fluid balance as well as liver and kidney function. It is also used to help rule out conditions such as diabetes. Tests related to electrolytes and fluid balance include: carbon dioxide, chloride, potassium, and sodium. Tests specific to liver function include: albumin, bilirubin, alkaline phosphatase, ALT, AST, and total protein. Tests specific to kidney function include: BUN and creatinine. Calcium is needed to support metabolic processes such as heart function, muscle contraction, nerve function, and blood clotting. Glucose is the main source of energy for the body and is regulated by insulin. Glucose measurement determines whether the glucose/insulin metabolic process is functioning properly.
31% higher than market
Blood test, lipids (cholesterol and triglycerides)
Blood test, lipids (cholesterol and triglycerides)
"A lipid panel is obtained to assess the risk for cardiovascular disease and to monitor appropriate treatment. Lipids are comprised of cholesterol, protein, and triglycerides. They are stored in cells and circulate in the blood. Lipids are important for cell health and as an energy source. A lipid panel should include a measurement of triglycerides and total serum cholesterol and then calculate to find the measurement of high density lipoprotein (HDL-C), low density lipoprotein (LDL-C) and very low density lipoprotein (VLDL-C). HDL contains the highest ratio of cholesterol and is often referred to as ""good cholesterol"" because it is capable of transporting excess cholesterol in the blood to the liver for removal. LDL contains the highest ratio of protein and is considered ""bad cholesterol"" because it transports and deposits cholesterol in the walls of blood vessels. VLDL contains the highest ratio of triglycerides and high levels are also considered ""bad"" because it converts to LDL after depositing triglyceride molecules in the walls of blood vessels. A blood sample is obtained by separately reportable venipuncture or finger stick. Serum/plasma is tested using quantitative enzymatic method."
15% higher than market
Blood test, thyroid stimulating hormone (TSH)
Blood test, thyroid stimulating hormone (TSH)
A blood test is performed to determine levels of thyroid stimulating hormone (TSH). TSH is produced in the pituitary and helps to regulate two other thyroid hormones, triiodothyronine (T3) and thyroxin (T4), which in turn help regulate the body's metabolic processes. TSH levels are tested to determine whether the thyroid is functioning properly. Patients with symptoms of weight gain, tiredness, dry skin, constipation, or menstrual irregularities may have an underactive thyroid (hypothyroidism). Patients with symptoms of weight loss, rapid heart rate, nervousness, diarrhea, feeling of being too hot, or menstrual irregularities may have an overactive thyroid (hypothyroidism). TSH levels are also periodically tested in individuals on thyroid medications. The test is performed by electrochemiluminescent immunoassay.
6% higher than market
Carcinoembryonic antigen (CEA) protein level
Carcinoembryonic antigen (CEA) protein level
A laboratory test is obtained to measure carcinoembryonic antigen (CEA) levels in blood and body fluids. CEA is a protein normally present at high levels during fetal development but is low or absent after birth. Elevated levels of CEA may occur with colorectal, breast, lung, pancreatic, prostate, ovarian, and medullary thyroid cancers. CEA testing can help determine tumor size, stage, and metastasis. A baseline level is usually obtained following a cancer diagnosis. Serial testing is done to monitor treatment and response to therapy. Elevated levels of CEA have also been noted in smokers and in patients diagnosed with inflammatory disorders, cirrhosis, peptic ulcer, ulcerative colitis, rectal polyps, emphysema, and benign breast disease. CEA testing should not be used for screening in the general population. A blood sample is obtained by separately reportable venipuncture. Cerebral spinal fluid (CSF) is obtained by separately reportable lumbar puncture. Pleural and peritoneal fluids are obtained by needle aspiration. Serum/plasma and body fluids are tested using quantitative electrochemiluminescent immunoassay.
78% lower than market
Complete blood cell count - automated differential WBC count
Complete blood cell count - automated differential WBC count
An automated complete blood count (CBC) is performed with or without automated differential white blood cell (WBC) count. A CBC is used as a screening test to evaluate overall health and symptoms such as fatigue, bruising, bleeding, and inflammation, or to help diagnose infection. A CBC includes measurement of hemoglobin (Hgb) and hematocrit (Hct), red blood cell (RBC) count, white blood cell (WBC) count with or without differential, and platelet count. Hgb measures the amount of oxygen-carrying protein in the blood. Hct refers to the volume of red blood cells (erythrocytes) in a given volume of blood and is usually expressed as a percentage of total blood volume. RBC count is the number of red blood cells (erythrocytes) in a specific volume of blood. WBC count is the number of white blood cells (leukocytes) in a specific volume of blood. There are five types of WBCs: neutrophils, eosinophils, basophils, monocytes, and lymphocytes. If a differential is performed, each of the five types is counted separately. Platelet count is the number of platelets (thrombocytes) in the blood. Platelets are responsible for blood clotting. The CBC is performed with an automated blood cell counting instrument that can also be programmed to provide an automated WBC differential count.
14% higher than market
Complete blood cell count - automated test with out Differential
Complete blood cell count - automated test with out Differential
An automated complete blood count (CBC) is performed with or without automated differential white blood cell (WBC) count. A CBC is used as a screening test to evaluate overall health and symptoms such as fatigue, bruising, bleeding, and inflammation, or to help diagnose infection. A CBC includes measurement of hemoglobin (Hgb) and hematocrit (Hct), red blood cell (RBC) count, white blood cell (WBC) count with or without differential, and platelet count. Hgb measures the amount of oxygen-carrying protein in the blood. Hct refers to the volume of red blood cells (erythrocytes) in a given volume of blood and is usually expressed as a percentage of total blood volume. RBC count is the number of red blood cells (erythrocytes) in a specific volume of blood. WBC count is the number of white blood cells (leukocytes) in a specific volume of blood. There are five types of WBCs: neutrophils, eosinophils, basophils, monocytes, and lymphocytes. If a differential is performed, each of the five types is counted separately. Platelet count is the number of platelets (thrombocytes) in the blood. Platelets are responsible for blood clotting. The CBC is performed with an automated blood cell counting instrument that can also be programmed to provide an automated WBC differential count.
10% lower than market
Creatinine level to test for kidney function or muscle injury
Creatinine level to test for kidney function or muscle injury
A sample other than blood is taken to measure creatinine levels. Creatinine is a waste product produced by the muscles in the breakdown of creatine, which is a compound used by the muscles to create energy for contraction. The waste product, creatinine, is excreted by the kidneys and blood levels provide a good measurement of renal function. Creatinine may be checked to screen for or monitor treatment of renal disease. Creatinine levels may also be monitored in patients with acute or chronic illnesses that may impair renal function and in patients on medications that affect renal function. Creatinine clearance, also known as urea or urea nitrogen clearance tests both blood and urine samples for a calculation of creatinine content adjusted for urine volume and physical size as a general indicator of glomerular filtration function.
9% lower than market
Cyanocobalamin (vitamin B-12) level
Cyanocobalamin (vitamin B-12) level
Cyanocobalamin is a vitamer of the B-12 vitamin family and plays an important role in metabolism, red blood cell production and nervous system function. Blood levels of cyanocobalamin are measured. Blood levels may be reduced with pernicious and other forms of anemia, and in individuals who follow a strict vegan diet, have chronic infections (such as HIV) and during pregnancy. A blood sample is obtained by separately reportable venipuncture. Serum is tested using quantitative chemiluminescent immunoassay.
67% lower than market
Detection test for Mycoplasma pneumoniae (bacteria)
Detection test for Mycoplasma pneumoniae (bacteria)
38% lower than market
Detection test for Staphylococcus aureus, methicillin resistant (MRSA bacteria)
Detection test for Staphylococcus aureus, methicillin resistant (MRSA bacteria)
8% lower than market
Detection test for multiple types influenza virus
Detection test for multiple types influenza virus
31% lower than market
Detection test for organism; amplified probe technique
Detection test for organism; amplified probe technique
55% lower than market
Drug test(s) presumptive, any number of drug classes, includes sample validation when performed
Drug test(s) presumptive, any number of drug classes, includes sample validation when performed
22% lower than market
Flow cytometry, cell surface, cytoplasmic, or nuclear marker, technical component only; each additional marker
Flow cytometry, cell surface, cytoplasmic, or nuclear marker, technical component only; each additional marker
72% lower than market
Folic acid; serum
Folic acid; serum
A blood test is performed to measure folic acid (folate) levels in serum or red blood cells (RBC). Folic acid (folate) may also be referred to as Vitamin B9 and is essential for the growth, division and repair of cells, especially fetal growth during pregnancy and in early infancy. It is also necessary for the production of healthy red blood cells and to prevent anemia at all ages. The test may be used to diagnose anemia or certain neuropathies and to monitor the effectiveness of treatment for these conditions. A blood sample is obtained by separately reportable venipuncture.
2% lower than market
Gammaglobulin Measurement
Gammaglobulin Measurement
A test is performed to measure immunoglobin levels in the blood or other body fluids, such as saliva or cerebral spinal fluid. Immunoglobins, also referred to as antibodies, are evaluated to help diagnose a variety of conditions including autoimmune diseases, allergies, or malignant neoplasms such as multiple myeloma or macroglobulinemia. In addition, immunoglobulin levels may be evaluated in patients with frequent infections to determine if there is a low level of immunoglobulin IgG. Immunoglobulins are also evaluated in patients with cancer or H. pylori infection to determine the effectiveness of treatment. There are five major types of antibodies. IgA antibodies are found in the nose, respiratory and digestive tracts, ears, eyes, and vagina. IgA protects the body surfaces from outside foreign substances. IgD is found in tissues lining the abdominal and thoracic cavity. IgE is found in the lungs, skin, and mucous membranes and reacts to substances commonly associated with allergies, such as food, pollen, dander, dust, fungus spores, etc. High levels of IgE are associated with allergies. IgG is found in all body fluids and is important in fighting bacterial and viral infections. There are four subclasses of IgG, designated as IgG1, IgG2, IgG3, and IgG4. These different subclasses protect against different types of infection. For example IgG1 is particularly effective in protecting the body from viral proteins, whereas IgG2 is more effective against certain types of bacterial infections. Individuals may have selective IgG subclass deficiencies characterized by low levels of one or two IgG subclasses with normal total IgG. IgM is found in blood and lymph and is important in fighting infection. A blood specimen is obtained by separately reportable venipuncture, a CSF sample is obtained by separately reportable spinal puncture, or saliva is collected. The methodology used to test immunoglobulin levels is dependent on the type of specimen and the immunoglobulin being tested.
53% lower than market
Hemoglobin A1C level
Hemoglobin A1C level
A blood test is performed to measure glycosylated hemoglobin (HbA1C) levels. Plasma glucose binds to hemoglobin and the HbA1C test measures the average plasma glucose concentration over the life of red blood cells (approximately 90-120 days). HbA1C levels may be used as a diagnostic reference for patients with suspected diabetes mellitus (DM) and to monitor blood glucose control in patients with known DM. HbA1C levels should be monitored at least every 6 months in patients with DM and more frequently when the level is >7.0%. A blood sample is obtained by separately reportable venipuncture. Whole blood is tested using quantitative high performance liquid chromatography/boronate affinity.
7% higher than market
Hemoglobin Measurement
Hemoglobin Measurement
A blood test is performed to determine hemoglobin (Hgb) which is a measurement of the amount of oxygen-carrying protein in the blood. Hgb is measured to determine the severity of anemia or polycythemia, monitor response to treatment for these conditions, or determine the need for blood transfusion. A blood sample is collected by separately reportable venipuncture or finger, heel, or ear stick. The sample may be sent to the lab or a rapid testing system may be used in the physician's office. Systems consist of a portable photometer and pipettes that contain reagent. The pipette is used to collect the blood sample from a capillary stick and the blood is automatically mixed with the reagent in the pipette. The photometer is then used to read the result which is displayed on the photometer device.
25% lower than market
Hepatitis C Antibody Measurement
Hepatitis C Antibody Measurement
A laboratory test is performed to measure Hepatitis C virus (HCV) antibodies. Hepatitis C causes acute or chronic liver inflammation and may be transmitted via blood transfusion, needle sticks or sharing of needles in occupational situations or recreational drug use, unprotected sex, placental transfer during pregnancy, or sharing personal items such as a razor or toothbrush. The test is used to screen individuals at risk for infection with HCV. A blood sample is obtained by separately reportable venipuncture. Serum is tested using qualitative chemiluminescent immunoassay. Antibodies toward HCV may not start to elevate until 2 months after exposure, so a negative test screening should be repeated if there is a strong suspicion of HCV infection.
77% lower than market
Immunologic Analysis for Detection of Tumor Antigen; Immunoassay - Quantitative CA 15-3
Immunologic Analysis for Detection of Tumor Antigen; Immunoassay - Quantitative CA 15-3
71% lower than market
Immunologic Analysis for Detection of Tumor Antigen; Immunoassay - Quantitative CA 19-9
Immunologic Analysis for Detection of Tumor Antigen; Immunoassay - Quantitative CA 19-9
75% lower than market
Iron Binding Capacity
Iron Binding Capacity
A blood test is performed to measure the iron binding capacity of transferrin. Transferrin, a protein found in circulating blood is responsible for carrying iron molecules. This test measures the ability of transferrin to carry iron. A blood sample is obtained by separately reportable venipuncture. Serum or plasma is tested using quantitative spectrophotometry/calculation.
72% lower than market
Iron level
Iron level
A blood, urine or liver test is performed to measure iron levels. Iron (Fe) is an essential element that circulates in the blood attached to the protein transferrin. Iron is necessary component of hemoglobin, found in red blood cells (RBCs) and myoglobin found in muscle cells. Low iron levels may cause a decrease in red blood cells and iron deficiency anemia. High iron levels may be caused by excessive intake of iron supplements or a hereditary genetic condition such as hemochromatosis from a mutation of the RGMc gene or HAMP gene. A blood sample is obtained by separately reportable venipuncture. Serum or plasma is tested using quantitative spectrophotometry. A random voided or 24 hour urine specimen is obtained and tested using quantitative inductively coupled plasma/emission spectrometry. Patient should wait 2-4 days after receiving iodine or gadolinium contrast media to collect a urine specimen. A liver sample is obtained by a separately reportable procedure. Liver tissue is tested using quantitative inductively coupled plasma-mass spectrometry.
66% lower than market
Kidney Function Blood Test Panel
Kidney Function Blood Test Panel
A renal panel is obtained for routine health screening and to monitor conditions such as diabetes, renal disease, liver disease, nutritional disorders, thyroid and parathyroid function, and interventional drug therapies. Tests in a renal panel include glucose or blood sugar; electrolytes and minerals as sodium, potassium, chloride, total calcium, and phosphorus; the waste products blood urea nitrogen (BUN) and creatinine; a protein called albumin; and bicarbonate (carbon dioxide, CO2) responsible for acid base balance. Glucose is the main source of energy for the body and is regulated by insulin. High levels may indicate diabetes or impaired kidney function. Sodium is found primarily outside cells and maintains water balance in the tissues, as well as nerve and muscle function. Potassium is primarily found inside cells and affects heart rhythm, cell metabolism, and muscle function. Chloride moves freely in and out of cells to regulate fluid levels and help maintain electrical neutrality. Calcium is needed to support metabolic processes, heart and nerve function, muscle contraction, and blood clotting. Phosphorus is essential for energy production, nerve and muscle function, and bone growth. Blood urea nitrogen (BUN) and creatinine are waste products from tissue breakdown that circulate in the blood and are filtered out by the kidneys. Albumin, a protein made by the liver, helps to nourish tissue and transport hormones, vitamins, drugs, and calcium throughout the body. Bicarbonate (HCO3) may also be referred to as carbon dioxide (CO2) maintains body pH or the acid/base balance. A specimen is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative chemiluminescent immunoassay or quantitative enzyme-linked immunosorbent assay.
21% lower than market
Lactate dehydrogenase (enzyme) level
Lactate dehydrogenase (enzyme) level
A blood or body fluid test is performed to measure lactate dehydrogenase (LD) (LDH) levels. LDH is an enzyme present in red blood cells (RBCs) and in the tissue of heart, liver, pancreas, kidney, skeletal muscle, brain and lungs. LDH levels are used as a marker for tissue and RBC damage. Elevated blood levels can be caused by stroke, myocardial infarction, liver disease, pancreatitis, muscular dystrophy, infectious mononucleosis, hemolytic anemia and tumors/cancers such as lymphoma. Elevated cerebral spinal fluid (CSF) levels are usually indicative of bacterial meningitis. LDH levels in pleural and/or pericardial fluid can indicate if the effusion is an exudate, caused by an infection or a transudate caused by fluid pressure problem. A blood sample is obtained by separately reportable venipuncture. Cerebral spinal fluid is obtained by separately reportable lumbar puncture (spinal tap). Pericardial fluid is obtained by separately reportable pericardiocentesis. Fluid from a pleural effusion is obtained by separately reportable thoracentesis. Serum or plasma and all body fluids are tested using quantitative enzymatic methodology.
5% lower than market
Lipase (fat enzyme) level
Lipase (fat enzyme) level
A test is performed on blood and body fluids to measure lipase levels. Lipase is an enzyme released by the pancreas into the small intestine and is essential for the digestion of dietary fats. Elevated levels may result from small bowel obstruction, celiac disease, cholecystitis, duodenal ulcer, severe gastroenteritis, macrolipasemia, pancreatitis, and pancreatic tumors. The test may be ordered when there is a family history of lipoprotein lipase deficiency. A blood sample is obtained by separately reportable venipuncture. Other body fluids collected by other methods. Blood and other body fluids are tested using quantitative enzymatic methodology.
17% lower than market
Liver enzyme (SGOT), level
Liver enzyme (SGOT), level
A blood test is performed to measure aspartate aminotransferase (AST) levels. This enzyme was previously referred to as serum glutamic oxaloacetic transaminase (SGOT). AST is an enzyme found primarily in liver and muscle cells. Elevated levels may result from liver disease or damage such as hepatitis, cirrhosis, ischemia, drug toxicity, and/or muscle damage, especially cardiac muscle (myocardial infarction). This test is often ordered in conjunction with alanine transferase, ALT or other liver function tests (LFTs) to diagnose disease and monitor individuals taking cholesterol lowering medications. A blood sample is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative enzymatic method.
74% lower than market
Liver enzyme (SGPT), level
Liver enzyme (SGPT), level
A blood test is performed to measure alanine aminotransferase (ALT) levels. This enzyme was previously referred to as serum glutamic pyruvic transaminase (SGPT). ALT is an enzyme found primarily in liver and muscle cells. Elevated levels may result from liver disease or damage such as hepatitis, cirrhosis, ischemia, drug toxicity, and/or muscle damage, especially cardiac muscle (myocardial infarction). This test is often ordered in conjunction with aspartate transferase, AST or other liver function tests (LFTs) to diagnose disease and monitor individuals taking cholesterol lowering medications. A blood sample is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative enzymatic method.
2% lower than market
Liver function blood test panel
Liver function blood test panel
A hepatic function panel is obtained to diagnose acute and chronic liver disease, inflammation, or scarring and to monitor hepatic function while taking certain medications. Tests in a hepatic function panel should include albumin (ALB), total and direct bilirubin, alkaline phosphatase (ALP), total protein (TP), alanine aminotransferase (ALT, SGPT), and aspartate aminotransferase (AST, SGOT). Albumin (ALB) is a protein made by the liver that helps to nourish tissue and transport hormones, vitamins, drugs, and calcium throughout the body. Bilirubin, a waste product from the breakdown of red blood cells, is removed by the liver in a conjugated state. Bilirubin is measured as total (all the bilirubin circulating in the blood) and direct (the conjugated amount only) to determine how well the liver is performing. Alkaline phosphatase (ALP) is an enzyme produced by the liver and other organs of the body. In the liver, cells along the bile duct produce ALP. Blockage of these ducts can cause elevated levels of ALP, whereas cirrhosis, cancer, and toxic drugs will decrease ALP levels. Circulating blood proteins include albumin (60% of total) and globulins (40% of total). By measuring total protein (TP) and albumin (ALB), the albumin/globulin (A/G) ratio can be determined and monitored. TP may decrease with malnutrition, congestive heart failure, hepatic disease, and renal disease and increase with inflammation and dehydration. Alanine aminotransferase (ALT, SGPT) is an enzyme produced primarily in the liver and kidneys. In healthy individuals ALT is normally low. ALT is released when the liver is damaged, especially with exposure to toxic substances such as drugs and alcohol. Aspartate aminotransferase (AST, SGOT) is an enzyme produced by the liver, heart, kidneys, and muscles. In healthy individuals AST is normally low. An AST/ALT ratio is often performed to determine if elevated levels are due to liver injury or damage to the heart or skeletal muscles. A specimen is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative enzymatic method or quantitative spectrophotometry.
55% higher than market
Magnesium Level
Magnesium Level
A blood, urine, or fecal test is performed to measure magnesium levels. Magnesium is an essential dietary mineral responsible for enzyme function, energy production, and contraction and relaxation of muscle fibers. Decreased levels may result from severe burns, metabolic disorders, certain medications, and low blood calcium levels. A blood sample is obtained by separately reportable venipuncture. Red blood cells (RBCs) are tested using quantitative inductively coupled plasma-mass spectrometry. Serum/plasma is tested using quantitative spectrophotometry. A 24-hour voided urine specimen is tested using quantitative spectrophotometry. A random or 24-hour fecal sample is tested using quantitative spectrophotometry.
6% higher than market
Measurement C-reactive protein
Measurement C-reactive protein
A blood test is performed to measure C-reactive protein (CRP) levels. This standard test has a wide value range. CRP is an acute phase protein, synthesized by the liver and released in response to inflammation and infection. The test is not diagnostic for any specific disease or condition but can be used as a marker to monitor the body's response to treatment(s) or to evaluate the need for further testing. Elevation of CRP levels may be found during pregnancy, with the use of oral contraceptives, or hormone replacement therapy. Diseases/conditions that cause an elevation of CRP include: lymphoma, arteritis/vasculitis, osteomyelitis, inflammatory bowel disease, rheumatoid arthritis, pelvic inflammatory disease (PID), systemic lupus erythematosus (SLE), acute infections, burns, surgical procedures, and organ transplants. A blood sample is obtained by separately reportable venipuncture. Serum in neonates is tested using immunoassay. Serum/plasma in all other patients is tested using quantitative immunoturbidimetric method.
1% higher than market
Measurement of antibody (IgE) to allergic substance
Measurement of antibody (IgE) to allergic substance
Lab test for Allergen-specific antibodies
51% lower than market
Measurement of antibody for rheumatoid arthritis assessment
Measurement of antibody for rheumatoid arthritis assessment
76% lower than market
Microscopic Examination of White Blood Cells with Manual Count
Microscopic Examination of White Blood Cells with Manual Count
A blood smear is performed with microscopic examination with or without a manual differential WBC count. A blood smear is typically performed following an automated test that indicates the presence of abnormal or immature blood cells. It may also be performed when the physician suspects a condition that affects blood cell production, such as anemia. A blood sample is obtained by separately reportable venipuncture. A blood smear is prepared and examined under a microscope by a technician for immature or abnormal cells. The test is performed with a manual differential white blood cell (WBC) count. The technician examines and counts each of the five types of WBCs separately. Neutrophils comprise the majority of WBCs in healthy adults and are differentiated by cytoplasm with pink or purple granules. Eosinophils normally comprise 1-3% of total WBCs and are differentiated in stained smears by their large, red-orange granules. Elevated levels of eosinophils may indicate allergy or parasitic infection. Basophils normally comprise only 1% of total WBCs and are differentiated by their large black granules. Elevated levels of basophils may be indicative of certain leukemias, varicella (chicken pox) infection, or ulcerative colitis. Monocytes are the largest WBCs and act as scavengers to ingest (phagocytize) cellular debris, bacteria, and other particles. Lymphocytes produce antibodies (immunoglobulins) and are differentiated by their homogenous cytoplasm and smooth, round nucleus.
17% lower than market
Natriuretic peptide (heart and blood vessel protein) level
Natriuretic peptide (heart and blood vessel protein) level
The level of the natriuretic peptide in the blood is measured to evaluate heart failure and to differentiate symptoms that might be indicative of heart failure from other disorders that cause similar symptoms. A separately reportable venipuncture is performed and whole blood or plasma collected using EDTA as an anticoagulant. An automated immunoassay is performed using murine monoclonal and polyclonal antibodies against natriuretic peptide. The antibodies are labeled with a fluorescent dye and immobilized on the solid phase. The specimen is placed in the sample chamber and the analysis is run. The physician reviews the results and uses them to make diagnosis and treatment decisions.
4% lower than market
Organic acid level
Organic acid level
79% lower than market
Other closed skull fracture without mention of intracranial injury, with loss of consciousness of unspecified duration
Other closed skull fracture without mention of intracranial injury, with loss of consciousness of unspecified duration
78% lower than market
PSA (prostate specific antigen) measurement
PSA (prostate specific antigen) measurement
Prostate specific antigen (PSA) is measured. PSA is a protein produced by normal prostate cells found in serum and exists in both free form and complexed with other proteins. Total PSA is measured ad the total amount of both free and complexed forms. Total PSA levels are higher in men with benign prostatic hyperplasia (BPH), acute bacterial prostatitis, or prostate cancer. Total PSA is used to screen for prostate cancer and evaluate the response to treatment in those with prostate cancer, but cannot be used by itself to definitively diagnose prostate cancer.
1% lower than market
PSA Measurement; Free
PSA Measurement; Free
Prostate specific antigen (PSA) is measured. PSA is a protein produced by normal prostate cells found in serum and exists in both free form and complexed with other proteins. In 84154, free PSA is measured, often in conjunction with total PSA, to provide an indirect measurement of complexed PSA.
80% lower than market
Parathormone
Parathormone
A blood or tissue test is performed to measure parathormone (parathyroid hormone, parathyrin) levels. Parathyroid hormone (PTH) is produced by chief cells in the parathyroid gland. The hormone helps to regulate blood calcium levels, absorption/excretion of phosphate by the kidneys and in Vitamin D synthesis in the body. Elevated levels (hyperparathyroidism) may be caused by parathyroid gland tumors or chronic renal failure. Decreased levels (hypoparathyroidism) may result from inadvertent removal (during thyroid gland surgery), autoimmune disorders or genetic inborn errors of metabolism. A blood sample is obtained by separately reportable venipuncture. Parathyroid gland tissue is obtained by separately reportable fine needle aspirate. Serum/plasma or tissue sample are tested using quantitative electrochemiluminescent immunoassay. Plasma is tested for parathyroid hormone, CAP (Cyclase Activating Parathyroid Hormone) using immunoradiometric assay.
70% lower than market
Coagulation assessment blood test
Coagulation assessment blood test
This test may also be referred to as an activated PTT or aPTT. PTT may be performed to diagnose the cause of bleeding or as a screening test prior to surgery to rule-out coagulation defects. A silica and synthetic phospholipid PTT reagent is mixed with the patient plasma. The silica provides a negatively-charged particulate surface that activates the contact pathway for coagulation. Clot formation is initiated by adding calcium chloride to the mixture. Clotting time is measured photo-optically.
22% higher than market
Pathology examination of tissue using a microscope, intermediate complexity
Pathology examination of tissue using a microscope, intermediate complexity
Tissue removed during a surgical procedure, such as a biopsy, excision, or resection, is examined macroscopically (gross or visual examination) and then under a microscope. The cells, tissues, or organ are transported from the surgical suite to the pathologist. The pathologist first visually examines the specimen and notes any defining characteristics. The specimen is then prepared for microscopic evaluation. The physician carefully analyzes the specimens to help establish a diagnosis, identify the presence or absence of malignant neoplasm, identify the exact type malignancy if present, examine the margins of the specimen to determine whether or not the entire diseased area was removed. A written report of findings is then prepared and a copy sent to the treating physician. Pathology services are reported based on the type of tissue examined, whether or not the tissue is expected to be normal or diseased, the difficulty of the pathology exam, and the time required to complete the exam.
21% lower than market
Pathology examination of tissue using a microscope, moderately low complexity
Pathology examination of tissue using a microscope, moderately low complexity
Tissue removed during a surgical procedure, such as a biopsy, excision, or resection, is examined macroscopically (gross or visual examination) and then under a microscope. The cells, tissues, or organ are transported from the surgical suite to the pathologist. The pathologist first visually examines the specimen and notes any defining characteristics. The specimen is then prepared for microscopic evaluation. The physician carefully analyzes the specimens to help establish a diagnosis, identify the presence or absence of malignant neoplasm, identify the exact type malignancy if present, examine the margins of the specimen to determine whether or not the entire diseased area was removed. A written report of findings is then prepared and a copy sent to the treating physician. Pathology services are reported based on the type of tissue examined, whether or not the tissue is expected to be normal or diseased, the difficulty of the pathology exam, and the time required to complete the exam.
21% lower than market
Phosphatase (enzyme) level
Phosphatase (enzyme) level
Lab test for Alkaline Phosphatase
70% lower than market
Prostate Cancer Screening Test
Prostate Cancer Screening Test
Prostate cancer screening; prostate specific antigen test (psa)
2% higher than market
Red Blood Cell Concentration Measurement
Red Blood Cell Concentration Measurement
A blood test is performed to determine hematocrit (Hct). Hematocrit refers to the volume of red blood cells (erythrocytes) in a given volume of blood and is usually expressed as a percentage of total blood volume. A blood sample is obtained by separately reportable venipuncture or finger, heel, or ear stick. Hct is calculated using an electronic cell counter.
25% lower than market
Rheumatoid factor level
Rheumatoid factor level
Lab test for Rheumatoid Arthritis factor
2% lower than market
Screening Test for Red Blood Cell Antibodies
Screening Test for Red Blood Cell Antibodies
A blood sample is tested for antibodies directed against red blood cell (RBC) antigens other than A and B antigens. This test may also be referred to as an indirect antiglobulin test (IAT). This test is performed as part of a blood typing and screening test when it is anticipated that a blood transfusion might be required. If an antibody is detected, then separately reportable antibody identification is performed to identify the specific antibodies present. The test may be performed using IAT methodology or another serum technique such as solid phase. If multiple serum techniques are used, each reported separately.
68% lower than market
Special Stain for Microorganism; Gram or Glemsa Stain
Special Stain for Microorganism; Gram or Glemsa Stain
A laboratory test is performed to identify bacteria, fungi, or cell types in pus, normally sterile body fluid(s), or aspirated material using Gram or Giemsa stain technique. Gram staining is a differential technique used to classify bacteria into gram positive (Gram +) or gram negative (Gram -) groups. Gram + bacteria have a thick layer of peptidoglycan in the cell wall which stains purple. Giemsa technique is used in cytogenetics for chromosome staining; in histopathology to detect trichomonas, some spirochetes, protozoans, malaria, and other parasites; and as a stain for peripheral blood and bone marrow to differentiate cells types such as erythrocytes, platelets, lymphocyte cytoplasm, monocyte cytoplasm, and leukocyte nuclear chromatin. A drop of suspended culture or cell material is applied in a thin layer to a slide using an inoculation hook and fixed with heat. The material is stained and the slide is examined under a microscope. The bacteria, fungi, or cells are identified, counted, and a written report of the findings is made.
2% higher than market
Special stained specimen slides to examine tissue
Special stained specimen slides to examine tissue
59% lower than market
Strep Test
Strep Test
A direct optical test to detect Streptococcus Group A (Strep A) by immunoassay is a rapid, qualitative test performed using lateral flow immunoassay. Strep A causes acute upper respiratory infection with the most common symptoms being pharyngitis (sore throat) and fever. If left untreated serious complications can occur including rheumatic fever and glomerulonephritis. This type of test is a rapid, qualitative test performed using lateral flow immunoassay. A throat swab is obtained. Two reagents are added to extract Strep A antigen from the specimen. A dipstick is added to the extracted sample. If Strep A antigen is present the test line and a control line will change color indicating a positive test. Another method uses a throat swab specimen inserted into a test cassette. Antigen extraction solutions are then mixed in a separate chamber of the tube and added to the swab chamber. If Strep A is present, a test line will change color as will a second control line.
13% lower than market
Tacrolimus Level
Tacrolimus Level
A blood test is performed to measure tacrolimus levels. Tacrolimus, also known as Prograf is an immunosuppressant drug that affects the ability of certain white blood cells in the body to recognize and respond to transplanted body organs such as kidney, liver, heart and lung. The drug is administered intravenously, either alone or in combination with other immunosuppressant drugs. Tacrolimus has a narrow therapeutic range and blood levels may be assessed daily at the start of therapy, taper to 1-2 times per week and finally to once every 1-2 months. For routine monitoring the specimen is collected as a trough level, immediately prior to a scheduled dose and at least 12 hours after the previous dose. A blood sample is obtained by a separately reportable venipuncture. Whole blood is then tested using liquid chromatography-tandem mass spectrometry. Prograf may be tested with chromatographic or immunoassay technique and the results will be somewhat different. Make note of the technique used when comparing results with previous levels.
15% lower than market
Testosterone (hormone) level
Testosterone (hormone) level
A urine test is performed to measure total testosterone level. Testosterone is an androgen hormone secreted in the testes of men, ovaries of women, and the adrenal glands of both sexes. Testosterone helps promote protein synthesis and supports the growth of cells and tissue. This test is often performed in conjunction with sex hormone binding globulin. A blood sample is obtained by separately reportable venipuncture. Serum/plasma of adult males is tested using quantitative electrochemiluminescent immunoassay with the value derived from a mathematical expression using sex hormone binding globulin (SHBG). Serum/plasma of adult males may also be tested using quantitative equilibrium dialysis/high performance liquid chromatography-tandem mass spectrometry. Serum/plasma of children and adult females is tested using quantitative high performance liquid chromatography-tandem mass spectrometry/electrochemiluminescent immunoassay with the value also derived from a mathematical expression using sex hormone binding globulin (SHBG).
30% lower than market
Thyroid Hormone, T3 Measurement, Free
Thyroid Hormone, T3 Measurement, Free
A blood sample is tested to determine levels of total triiodothyronine (T3), free T3, or reverse T3. T3 is a hormone made by the thyroid gland that affects almost every metabolic process including body temperature, growth, and heart rate. T3 can either be produced by the thyroid or synthesized by the body from T4. Approximately 95% of T3 is bound to proteins in the blood and is inactive. The remaining 5% is free and active. T3 tests are used to help determine whether the thyroid is functioning properly, to diagnose hyperthyroidism, and to monitor patients with known thyroid disorders. In total T3, which reflects the amount of both bound and free T3, is measured. Total and free T3 are evaluated using electrochemiluminescent immunoassay.
57% lower than market
Total protein level, blood
Total protein level, blood
A blood test is performed to measure total protein levels. Total protein is often reported as a ratio of albumin to globulin (A/G ratio), and normal results will show albumin slightly greater than globulin. The test may be used to monitor nutritional status or diagnose kidney and liver disease. Elevated levels can indicate chronic inflammation, viral hepatitis, HIV infection, and multiple myeloma. Levels that are decreased may result from malnutrition or malabsorption syndromes such as celiac disease or inflammatory bowel disease. A blood sample is obtained by separately reportable venipuncture. Serum, plasma, or whole blood may be tested using quantitative spectrophotometry.
78% lower than market
Troponin (protein) analysis
Troponin (protein) analysis
A blood test is performed to measure troponin levels. Troponins are regulatory proteins that facilitate contraction of skeletal and smooth muscle by forming calcium bonds. Troponin T binds to tropomyosin to form a complex. Troponin I binds to actin and holds the Troponin T-tropomyosin complex together. Elevation of troponins, coupled with cardiac symptoms such as chest pain are considered diagnostic for cardiac injury. This test is commonly ordered in the Emergency Department when a patient presents with possible myocardial infarction, and is then repeated at 6 hour intervals. It may be ordered with other tests that assess cardiac biomarkers such as CK, CK-MB, and myoglobin. A blood sample is obtained by separately reportable venipuncture. Serum/plasma is tested for Troponin T using quantitative electrochemiluminescent immunoassay. Serum is tested for Troponin I using chemiluminescent immunoassay.
8% higher than market
Uric acid level, blood
Uric acid level, blood
A blood test is performed to measure uric acid levels. Uric acid forms from the natural breakdown of body cells and the food we ingest. Uric acid is normally filtered by the kidneys and excreted in urine. Elevated blood levels may result from kidney disease, certain cancers and/or cancer therapies, hemolytic or sickle cell anemia, heart failure, cirrhosis, lead poisoning, and low levels of thyroid or parathyroid hormones. Levels may be decreased in Wilson's disease, poor dietary intake of protein, and with the use of certain drugs. A blood sample is obtained by separately reportable venipuncture. Serum/plasma is tested using quantitative spectrophotometry.
9% higher than market
Urinalysis with Examination, using Microscope
Urinalysis with Examination, using Microscope
A urinalysis is performed by dip stick or tablet reagent for bilirubin, glucose, hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific gravity, and/or urobilinogen. Urinalysis can quickly screen for conditions that do not immediately produce symptoms such as diabetes mellitus, kidney disease, or urinary tract infection. A dip stick allows qualitative and semi-quantitative analysis using a paper or plastic stick with color strips for each agent being tested. The stick is dipped in the urine specimen and the color strips are then compared to a color chart to determine the presence or absence and/or a rough estimate of the concentration of each agent tested. Reagent tablets use an absorbent mat with a few drops of urine placed on the mat followed by a reagent tablet. A drop of distilled, deionized water is then placed on the tablet and the color change is observed. Bilirubin is a byproduct of the breakdown of red blood cells by the liver. Normally bilirubin is excreted through the bowel, but in patients with liver disease, bilirubin is filtered by the kidneys and excreted in the urine. Glucose is a sugar that is normally filtered by the glomerulus and excreted only in small quantities in the urine. Excess sugar in the urine (glycosuria) is indicative of diabetes mellitus. The peroxidase activity of erythrocytes is used to detect hemoglobin in the urine which may be indicative of hematuria, myoglobinuria, or hemoglobinuria. Ketones in the urine are the result of diabetic ketoacidosis or calorie deprivation (starvation). A leukocyte esterase test identifies the presence of white blood cells in the urine. The presence of nitrites in the urine is indicative of bacteria. The pH identifies the acid-base levels in the urine. The presence of excessive amounts of protein (proteinuria) may be indicative of nephrotic syndrome. Specific gravity measures urine density and is indicative of the kidneys' ability to concentrate and dilute urine. Following dip stick or reagent testing, the urine sample may be examined under a microscope. The urine sample is placed in a test tube and centrifuged. The sediment is resuspended. A drop of the resuspended sediment is then placed on a glass slide, cover-slipped, and examined under a microscope for crystals, casts, squamous cells, blood (white, red) cells, and bacteria.
29% higher than market
Urinalysis, Automated Test
Urinalysis, Automated Test
A urinalysis is performed by dip stick or tablet reagent for bilirubin, glucose, hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific gravity, and/or urobilinogen. Urinalysis can quickly screen for conditions that do not immediately produce symptoms such as diabetes mellitus, kidney disease, or urinary tract infection. A dip stick allows qualitative and semi-quantitative analysis using a paper or plastic stick with color strips for each agent being tested. The stick is dipped in the urine specimen and the color strips are then compared to a color chart to determine the presence or absence and/or a rough estimate of the concentration of each agent tested. Reagent tablets use an absorbent mat with a few drops of urine placed on the mat followed by a reagent tablet. A drop of distilled, deionized water is then placed on the tablet and the color change is observed. Bilirubin is a byproduct of the breakdown of red blood cells by the liver. Normally bilirubin is excreted through the bowel, but in patients with liver disease, bilirubin is filtered by the kidneys and excreted in the urine. Glucose is a sugar that is normally filtered by the glomerulus and excreted only in small quantities in the urine. Excess sugar in the urine (glycosuria) is indicative of diabetes mellitus. The peroxidase activity of erythrocytes is used to detect hemoglobin in the urine which may be indicative of hematuria, myoglobinuria, or hemoglobinuria. Ketones in the urine are the result of diabetic ketoacidosis or calorie deprivation (starvation). A leukocyte esterase test identifies the presence of white blood cells in the urine. The presence of nitrites in the urine is indicative of bacteria. The pH identifies the acid-base levels in the urine. The presence of excessive amounts of protein (proteinuria) may be indicative of nephrotic syndrome. Specific gravity measures urine density and is indicative of the kidneys' ability to concentrate and dilute urine. Following dip stick or reagent testing, the urine sample may be examined under a microscope. The urine sample is placed in a test tube and centrifuged. The sediment is resuspended. A drop of the resuspended sediment is then placed on a glass slide, cover-slipped, and examined under a microscope for crystals, casts, squamous cells, blood (white, red) cells, and bacteria.
20% higher than market
Urinalysis, Manual Test
Urinalysis, Manual Test
A urinalysis is performed by dip stick or tablet reagent for bilirubin, glucose, hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific gravity, and/or urobilinogen. Urinalysis can quickly screen for conditions that do not immediately produce symptoms such as diabetes mellitus, kidney disease, or urinary tract infection. A dip stick allows qualitative and semi-quantitative analysis using a paper or plastic stick with color strips for each agent being tested. The stick is dipped in the urine specimen and the color strips are then compared to a color chart to determine the presence or absence and/or a rough estimate of the concentration of each agent tested. Reagent tablets use an absorbent mat with a few drops of urine placed on the mat followed by a reagent tablet. A drop of distilled, deionized water is then placed on the tablet and the color change is observed. Bilirubin is a byproduct of the breakdown of red blood cells by the liver. Normally bilirubin is excreted through the bowel, but in patients with liver disease, bilirubin is filtered by the kidneys and excreted in the urine. Glucose is a sugar that is normally filtered by the glomerulus and excreted only in small quantities in the urine. Excess sugar in the urine (glycosuria) is indicative of diabetes mellitus. The peroxidase activity of erythrocytes is used to detect hemoglobin in the urine which may be indicative of hematuria, myoglobinuria, or hemoglobinuria. Ketones in the urine are the result of diabetic ketoacidosis or calorie deprivation (starvation). A leukocyte esterase test identifies the presence of white blood cells in the urine. The presence of nitrites in the urine is indicative of bacteria. The pH identifies the acid-base levels in the urine. The presence of excessive amounts of protein (proteinuria) may be indicative of nephrotic syndrome. Specific gravity measures urine density and is indicative of the kidneys' ability to concentrate and dilute urine. Following dip stick or reagent testing, the urine sample may be examined under a microscope. The urine sample is placed in a test tube and centrifuged. The sediment is resuspended. A drop of the resuspended sediment is then placed on a glass slide, cover-slipped, and examined under a microscope for crystals, casts, squamous cells, blood (white, red) cells, and bacteria.
4% lower than market
Vitamin D-3 Level
Vitamin D-3 Level
Blood levels of 25-hydroxyvitamin D are used to primarily to determine whether a deficiency of Vitamin D or abnormal metabolism of calcium is the cause of bone weakness or malformation. Vitamin D is a fat soluble vitamin that is absorbed from the intestine like fat, and 25-hydroxyvitamin D levels are also evaluated in individuals with conditions or diseases that interfere with fat absorption, such as cystic fibrosis, Crohn's disease, or in patients who have undergone gastric bypass surgery. A blood sample is obtained. Levels of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 are evaluated using chemiluminescent immunoassay. The test results may be the sum of Vitamin D3 and D2 or the results may include fractions of D3 and D2 as well as the sum of these values.
53% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT MEDICINE CHARGES
OUTPATIENT MEDICINE CHARGES
Description
Variance
Sleep monitoring of patient (6 years or older) in sleep lab
Sleep monitoring of patient (6 years or older) in sleep lab
14% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT OBSERVATION CHARGES
OUTPATIENT OBSERVATION CHARGES
Description
Variance
Hospital Observation per Hour
Hospital Observation per Hour
Hospital observation service, per hour
44% lower than market
Hospital observation care discharge
Hospital observation care discharge
38% lower than market
Hospital observation care typically 30 minutes
Hospital observation care typically 30 minutes
64% lower than market
Subsequent observation care, typically 25 minutes per day
Subsequent observation care, typically 25 minutes per day
47% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT RESPIRATORY THERAPY CHARGES
OUTPATIENT RESPIRATORY THERAPY CHARGES
The following charges reflect the most common services offered by our Respiratory Therapy department. Patients may have additional charges, depending on the services performed.
Description
Variance
Arterial Puncture
Arterial Puncture
The radial artery is the most common site for arterial puncture with alternative sites being the axillary and femoral arteries. The arterial puncture site is selected. The skin is prepped for sterile entry. The selected artery is punctured and the necessary blood samples obtained for separately reportable laboratory studies. The needle is withdrawn and pressure applied to the puncture site.
45% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT SUPPLIES CHARGES
OUTPATIENT SUPPLIES CHARGES
Description
Variance
Technetium tc-99m sestamibi, diagnostic, per study dose
Technetium tc-99m sestamibi, diagnostic, per study dose
23% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT SURGICAL SERVICES CHARGES
OUTPATIENT SURGICAL SERVICES CHARGES
Description
Variance
Amputation of finger or thumb; with direct closure
Amputation of finger or thumb; with direct closure
51% lower than market
Amputation, toe; metatarsophalangeal joint
Amputation, toe; metatarsophalangeal joint
27% lower than market
Application of Short Arm Splint
Application of Short Arm Splint
A static splint is applied to stabilize an injury by decreasing movement and providing support to the posterior aspect of the forearm, wrist, and hand. A stockinette is applied over the arm from the elbow to the wrist followed by padding over the stockinette. Plaster sheets cut to the appropriate length are then immersed in water and saturated. Excess water is gently squeezed out of the plaster. The plaster is applied to the posterior aspect of the forearm, wrist, and hand. The plaster is smoothed and molded. An elastic bandage is wrapped around the arm to secure the splint. The forearm may be placed in a sling.
33% lower than market
Application of Short Leg Splint (Calf to Foot)
Application of Short Leg Splint (Calf to Foot)
Splints stabilize injuries by decreasing movement and providing support to the posterior aspect of the extremity. A stockinette is applied over the leg followed by padding over the stockinette. Plaster sheets cut to the appropriate length are then immersed in water and saturated. Excess water is gently squeezed out of the plaster. The plaster is applied to the posterior aspect of the leg and smoothed and molded. An elastic bandage is then wrapped around the leg to secure the splint.
15% lower than market
Application of cast, elbow to finger (short arm)
Application of cast, elbow to finger (short arm)
Procedure performed in the clinic to apply a cast from the elbow to the fingers (the short-arm)
62% lower than market
Application of cast, shoulder to hand (long arm)
Application of cast, shoulder to hand (long arm)
70% lower than market
Application of long arm splint (shoulder to hand)
Application of long arm splint (shoulder to hand)
73% lower than market
Application of short leg cast (below knee to toes)
Application of short leg cast (below knee to toes)
62% lower than market
Arthrodesis, sacroiliac joint, percutaneous or minimally invasive (indirect visualization), with image guidance, includes obtaining bone graft when performed, and placement of transfixing device
Arthrodesis, sacroiliac joint, percutaneous or minimally invasive (indirect visualization), with image guidance, includes obtaining bone graft when performed, and placement of transfixing device
78% lower than market
Arthroplasty with prosthetic replacement; distal radius and partial or entire carpus (total wrist)
Arthroplasty with prosthetic replacement; distal radius and partial or entire carpus (total wrist)
64% lower than market
Arthroplasty, glenohumeral joint; total shoulder (glenoid and proximal humeral replacement (eg, total shoulder))
Arthroplasty, glenohumeral joint; total shoulder (glenoid and proximal humeral replacement (eg, total shoulder))
49% lower than market
Arthrotomy, with exploration, drainage, or removal of loose or foreign body; interphalangeal joint, each
Arthrotomy, with exploration, drainage, or removal of loose or foreign body; interphalangeal joint, each
55% lower than market
Aspiration of abscess, blood accumulation, blister, or cyst
Aspiration of abscess, blood accumulation, blister, or cyst
7% higher than market
Avulsion of nail plate, partial or complete, simple; single
Avulsion of nail plate, partial or complete, simple; single
68% lower than market
Biopsy and/or removal of polyp of the uterus using an endoscope
Biopsy and/or removal of polyp of the uterus using an endoscope
58% lower than market
Biopsy of Large Bowel, Using an Endoscope
Biopsy of Large Bowel, Using an Endoscope
A flexible colonoscopy is performed with single or multiple biopsies. The colonoscope is inserted into the rectum and advanced through the colon to the cecum or a point within the terminal ileum, using air insufflation to separate the mucosal folds for better visualization. Mucosal surfaces of the colon are inspected and any abnormalities are noted. The endoscope is then withdrawn and mucosal surfaces are again inspected for ulcerations, varices, bleeding sites, lesions, strictures, or other abnormalities. Any suspect site(s) to be biopsied is identified and biopsy forceps are placed through the biopsy channel in the endoscope. The forceps are opened, the tissue is spiked, and the forceps are closed. The biopsied tissue is then removed through the endoscope. One or more tissue samples may be obtained and are sent for separately reportable laboratory analysis.
26% lower than market
Biopsy of breast accessed throught the skin with ultrasound guidance; first lesion
Biopsy of breast accessed throught the skin with ultrasound guidance; first lesion
60% lower than market
Biopsy of the Esophagus, Stomach, Using an Endoscope
Biopsy of the Esophagus, Stomach, Using an Endoscope
An upper gastrointestinal (UGI) endoscopic examination, also referred to as an esophagogastroduodenoscopy (EGD), is performed on the esophagus, stomach, duodenum and/or jejunum with biopsy(s). The mouth and throat are numbed using an anesthetic spray. A hollow mouthpiece is placed in the mouth. The flexible fiberoptic endoscope is then inserted and advanced as it is swallowed by the patient. Once the endoscope has been advanced beyond the cricopharyngeal region, it is guided using direct visualization. The esophagus is inspected and any abnormalities are noted. The endoscope is then advanced beyond the gastroesophageal junction into the stomach and the stomach is insufflated with air. The cardia, fundus, greater and lesser curvature, and antrum are inspected and any abnormalities are noted. The tip of the endoscope is then advanced through the pylorus and into the duodenum and/or jejunum where mucosal surfaces are inspected for any abnormalities. Single or multiple samples of suspect tissue are taken through the scope. The endoscope is withdrawn and mucosal surfaces are again inspected for ulcerations, varices, bleeding sites, lesions, strictures, or other abnormalities.
87% lower than market
Biopsy of uterine lining
Biopsy of uterine lining
45% lower than market
Biopsy of voice box using an endoscope with operating microscope or telescope
Biopsy of voice box using an endoscope with operating microscope or telescope
53% lower than market
Biopsy or removal of nasal polyp or tissue using an endoscope
Biopsy or removal of nasal polyp or tissue using an endoscope
72% lower than market
Bunionectomy
Bunionectomy
23% lower than market
Carpal Tunnel Release
Carpal Tunnel Release
40% lower than market
Carpectomy; 1 bone
Carpectomy; 1 bone
11% higher than market
Closed treatment of broken ankle with manipulation, trimalleolar ankle fracture
Closed treatment of broken ankle with manipulation, trimalleolar ankle fracture
10% higher than market
Closed treatment of broken great toe with manipulation
Closed treatment of broken great toe with manipulation
38% lower than market
Colonoscopy on High Cancer Risk Patient
Colonoscopy on High Cancer Risk Patient
Colorectal cancer screening; colonoscopy on individual at high risk
25% lower than market
Colonscopy
Colonscopy
A flexible colonoscopy is performed with or without collection of specimens by brushing or washing. The colonoscope is inserted into the rectum and advanced through the colon to the cecum or a point within the terminal ileum, using air insufflation to separate the mucosal folds for better visualization. Mucosal surfaces of the colon are inspected and any abnormalities are noted. The endoscope is then withdrawn as mucosal surfaces are again inspected for ulcerations, varices, bleeding sites, lesions, strictures, or other abnormalities. Cytology (cell) samples may be obtained using a brush introduced through the endoscope. Alternatively, sterile water may be introduced to wash the mucosal lining and the fluid aspirated to obtain cell samples. Cytology samples are sent for separately reportable laboratory analysis.
85% lower than market
Complex control of nose bleed
Complex control of nose bleed
51% lower than market
Control Nose Bleed - Simple Case
Control Nose Bleed - Simple Case
Nasal hemorrhage is also referred to as epistaxis. The most common sites of bleeding are the anterior portion of the nasal septum at the plexus of vessels known as the Kiesselbach's plexus or the ethmoidal vessels also located in the anterior region of the nasal cavity. Less common is bleeding from the sphenopalatine artery located posteriorly. Pledgets soaked in an anesthetic-vasconstrictor solution are inserted into the nasal cavity for 10-15 minutes to anesthetize and shrink the nasal mucosa. Following removal of the pledgets, the nasal cavity is examined. If the bleeding point can be identified, bleeding is controlled with pressure followed by chemical cautery using a silver nitrate stick applied to the bleeding point. Alternatively, electrocautery may be used. If pressure and electrocautery or chemical cautery fails, Vaseline gauze packing, a nasal tampon or sponge, or an epistaxis balloon may be used.
1% higher than market
Control of nose bleed and insertion of packing
Control of nose bleed and insertion of packing
9% lower than market
Correction of deformity of first long bone at toe joint
Correction of deformity of first long bone at toe joint
24% lower than market
Correction, hallux valgus (bunionectomy), with sesamoidectomy, when performed; with double osteotomy, any method
Correction, hallux valgus (bunionectomy), with sesamoidectomy, when performed; with double osteotomy, any method
53% lower than market
Crushing of stone in urinary duct (ureter) with stent using an endoscope
Crushing of stone in urinary duct (ureter) with stent using an endoscope
51% lower than market
Destruction of benign lesions; 15 or more lesions
Destruction of benign lesions; 15 or more lesions
77% lower than market
Destruction of lower or sacral spinal facet joint nerves using imaging guidance
Destruction of lower or sacral spinal facet joint nerves using imaging guidance
2% lower than market
Destruction of malignant growth (2.1 to 3.0 centimeters) of trunk, arms, or legs
Destruction of malignant growth (2.1 to 3.0 centimeters) of trunk, arms, or legs
41% lower than market
Destruction of skin growth
Destruction of skin growth
Procedure performed in the clinic to destroy a lesion of the skin
31% lower than market
Destruction of up to 14 skin growths
Destruction of up to 14 skin growths
59% lower than market
Diagnostic Examination of Esophagus, Stomach, and/or Upper Small Bowel with Endoscope
Diagnostic Examination of Esophagus, Stomach, and/or Upper Small Bowel with Endoscope
A diagnostic upper gastrointestinal (UGI) endoscopic examination is performed of the esophagus, stomach, duodenum and/or jejunum with or without collection of specimens by brushing or washing. This procedure may also be referred to as an esophagogastroduodenoscopy (EGD). The mouth and throat are numbed using an anesthetic spray. A hollow mouthpiece is placed in the mouth. The flexible fiberoptic endoscope is then inserted and advanced as it is swallowed by the patient. Once the endoscope has been advanced beyond the cricopharyngeal region, it is guided using direct visualization. The esophagus is inspected and any abnormalities are noted. The endoscope is then advanced beyond the gastroesophageal junction into the stomach and the stomach is insufflated with air. The cardia, fundus, greater and lesser curvature, and antrum of the stomach are inspected and any abnormalities are noted. The tip of the endoscope is then advanced through the pylorus and into the duodenum and/or jejunum. Mucosal surfaces of the duodenum and/or jejunum are inspected and any abnormalities are noted. The endoscope is then withdrawn and mucosal surfaces are again inspected for ulcerations, varices, bleeding sites, lesions, strictures, or other abnormalities. Cytology samples may be obtained by cell brushing or washing.
128% higher than market
Diagnostic examination of voice box using flexible endoscope
Diagnostic examination of voice box using flexible endoscope
23% lower than market
Drainage of Abscess
Drainage of Abscess
This skin is cleansed and local anesthetic injected as needed. A straight or elliptical incision is made spanning the entire area of fluctuance. Any pockets of pus are opened using blunt dissection. The abscess is drained and then irrigated with sterile solution.
76% lower than market
Exploration, drainage, or removal of foreign body in knee joint
Exploration, drainage, or removal of foreign body in knee joint
13% lower than market
Removal of cataract with insertion of lens
Removal of cataract with insertion of lens
37% lower than market
Fine needle aspiration; without imaging guidance
Fine needle aspiration; without imaging guidance
76% lower than market
Gallbladder Removal Using an Endoscope
Gallbladder Removal Using an Endoscope
The gallbladder is removed by laparoscopic technique. A small portal incision is made at the navel and a trocar is inserted. The scope and video camera are then inserted at this site. The abdomen is inflated with carbon dioxide. Two to three additional abdominal portal incisions are made and trocars are inserted for placing surgical instruments. The gallbladder is identified. If the gallbladder is distended, a needle may be used to drain bile from the gallbladder. Grasper clamps are applied. The Hartmann's pouch is identified and retracted, exposing the triangle of Calot. The cystic artery and cystic duct are identified. The cystic duct is dissected free and transected. The cystic artery is dissected free, ligated, and doubly divided. Electrocautery is used to dissect the gallbladder off the liver bed. The gallbladder is placed in an extraction sac and removed from the abdomen through one of the small incisions.
51% lower than market
Hammer Toe Correction
Hammer Toe Correction
69% lower than market
Implantation of spinal neurostimulator electrodes
Implantation of spinal neurostimulator electrodes
38% lower than market
Implantation of spinal neurostimulator electrodes, accessed through the skin
Implantation of spinal neurostimulator electrodes, accessed through the skin
47% lower than market
Incision and removal of foreign body, subcutaneous tissues; simple
Incision and removal of foreign body, subcutaneous tissues; simple
70% lower than market
Incision of penile foreskin
Incision of penile foreskin
19% lower than market
Incision of should joint capsule using an endoscope
Incision of should joint capsule using an endoscope
35% lower than market
Incision of tendon located from elbow to shoulder, open procedure
Incision of tendon located from elbow to shoulder, open procedure
23% lower than market
Incision to release foot tendon, open procedure
Incision to release foot tendon, open procedure
61% lower than market
Incision to repair tendon covering at wrist; deQuervains disease
Incision to repair tendon covering at wrist; deQuervains disease
1% lower than market
Injection of radioactive dye for X-ray identification of lymph node
Injection of radioactive dye for X-ray identification of lymph node
51% lower than market
Injection of anesthetic and/or steroid into lower spine nerve root using imaging
Injection of anesthetic and/or steroid into lower spine nerve root using imaging
50% lower than market
Injection of substance into spinal canal or lower back using imaging
Injection of substance into spinal canal or lower back using imaging
72% lower than market
Injections of anesthetic and/or steroid drug into nerve of foot
Injections of anesthetic and/or steroid drug into nerve of foot
36% lower than market
Injections of tendon sheath, ligament, or muscle membrane
Injections of tendon sheath, ligament, or muscle membrane
Procedure performed in the clinic for injection into a tendon, a tendon sheath, or a ligament
76% lower than market
Insertion of Breathing Tube Using an Endoscope
Insertion of Breathing Tube Using an Endoscope
The mouth is opened and any dentures are removed. A laryngoscope is passed into the hypopharynx and the glottis and vocal cords are visualized. A properly sized endotracheal tube is selected and the balloon is inflated. A stylet is inserted into the endotracheal tube and the tube and stylet are bent into a crescent shape. The endotracheal tube and stylet are inserted alongside the laryngoscope into the trachea and positioned with the balloon lying just beyond the vocal cords. The stylet is removed and the endotracheal tube is connected to the ventilation device and secured with tape. Breath sounds are checked using a stethoscope to ensure that the endotracheal tube is properly positioned.
10% lower than market
Insertion of Central Venous Catheter
Insertion of Central Venous Catheter
A tunneled centrally inserted central venous catheter (CVC) with a subcutaneous port is placed. A CVC must terminate in the subclavian, brachiocephalic, or iliac veins, the superior or inferior vena cava, or right atrium. A tunneled CVC is placed through a subcutaneous tunnel into the jugular, subclavian, or femoral vein or the inferior vena cava with the most common venous access site for tunneled devices being the jugular vein. Separately reportable imaging guidance may be used to access the venous entry site and/or to manipulate the catheter tip to the final central position. Local anesthesia is administered at the planned puncture site. Using a Seldinger technique to access the jugular vein, the skin and vein are punctured with a needle. A guidewire is inserted through the needle and advanced several centimeters. A subcutaneous pocket is then created for placement of the port. A subcutaneous tunnel is created from the venous access site to the subcutaneous pocket. An introducer sheath and dilator are advanced over the guidewire and the guidewire and dilator removed. The catheter is then advanced through the tunnel to the introducer sheath in the jugular vein and into the brachiocephalic vein, subclavian vein, superior vena cava or right atrium. Placement is checked by separately reportable radiographs. The catheter and port are connected and the port is placed in the subcutaneous pocket. The incision over the venous access site is closed. The port is sutured into place and the pocket is closed.
45% lower than market
Insertion of Central Venous Catheter for Infusion
Insertion of Central Venous Catheter for Infusion
A peripherally inserted central venous catheter (PICC) is similar to an intravenous line and is used for the delivery of medication or fluids over a prolonged period of time. Ultrasound is used as needed to identify a suitable large vein in the arm. Typically, one of the deeper veins located above the elbow is used, such as the basilic, cephalic, or brachial vein. The planned inserted site is cleansed with bactericidal solution. A tourniquet is placed on the arm and a local anesthetic injected at the planned insertion site. There are two techniques for insertion. Using a peel-away cannula technique, a cannula with a stylet is inserted into the selected vein. The stylet is removed. The PICC line is advanced through the cannula into the vein and advanced into the brachiocephalic vein, subclavian vein, or superior vena cava. Using a Seldinger technique, the skin and vein are punctured with a needle. A guidewire is inserted through the needle and advanced several centimeters. An introducer sheath and dilator are advanced over the guidewire and the guidewire and dilator removed. The PICC line is then advanced through the introducer sheath and into the brachiocephalic vein, subclavian vein, or superior vena cava. Separately reportable radiographs check placement. The PICC is secured with sutures and a dressing applied over the insertion site in the arm.
21% lower than market
Insertion of Needle into Vein to Collect Blood
Insertion of Needle into Vein to Collect Blood
An appropriate vein is selected, usually one of the larger anecubital veins such as the median cubital, basilic, or cehalic veins. A tourniquet is placed above the planned puncture site. The site is disinfected with an alcohol pad. A needle is attached to a hub and the vein is punctured. A Vacuainer tube is attached to the hub and the blood specimen is collected. The Vacutainer tube is removed. Depending on the specific blood tests required, multiple Vacutainers may be filled from the same punchture site.
26% lower than market
Insertion of interlaminar/interspinous process stabilization/distraction device, without fusion, including image guidance when performed, with open decompression, lumbar; single level
Insertion of interlaminar/interspinous process stabilization/distraction device, without fusion, including image guidance when performed, with open decompression, lumbar; single level
69% lower than market
Insertion of non-tunneled centrally inserted central venous catheter; age 5 years or older
Insertion of non-tunneled centrally inserted central venous catheter; age 5 years or older
23% lower than market
Insertion of spinal neurostimulator pulse generator or receiver
Insertion of spinal neurostimulator pulse generator or receiver
75% lower than market
Insertion of tunneled centrally inserted central venous catheter, without subcutaneous port or pump; age 5 years or older
Insertion of tunneled centrally inserted central venous catheter, without subcutaneous port or pump; age 5 years or older
51% lower than market
Removal of one knee cartilage using an endoscope
Removal of one knee cartilage using an endoscope
40% lower than market
Lumbar Joint Injection
Lumbar Joint Injection
46% lower than market
Lumbar Kyphoplasty
Lumbar Kyphoplasty
34% lower than market
Manipulation of shoulder joint under anesthesia
Manipulation of shoulder joint under anesthesia
30% lower than market
Open treatment of broken foot bone, metatarsal
Open treatment of broken foot bone, metatarsal
23% lower than market
Open treatment of broken of lower forearm or growth plate separation with insertion of hardware 3 or
Open treatment of broken of lower forearm or growth plate separation with insertion of hardware 3 or
50% lower than market
Open treatment of broken of lower forearm or growth plate separation with insertion of hardware of 2
Open treatment of broken of lower forearm or growth plate separation with insertion of hardware of 2
51% lower than market
Open treatment of knee cap fracture with insertion of hardware and/or removal of knee cap
Open treatment of knee cap fracture with insertion of hardware and/or removal of knee cap
53% lower than market
Open treatment of ligament tear at ankle joint
Open treatment of ligament tear at ankle joint
34% lower than market
Open treatment of metacarpal fracture, single
Open treatment of metacarpal fracture, single
44% lower than market
Open treatment of tibial fracture, proximal (plateau); unicondylar, includes internal fixation, when performed
Open treatment of tibial fracture, proximal (plateau); unicondylar, includes internal fixation, when performed
66% lower than market
Partial excision (craterization, saucerization, sequestrectomy, or diaphysectomy) bone (eg, osteomyelitis or bossing); tarsal or metatarsal bone, except talus or calcaneus
Partial excision (craterization, saucerization, sequestrectomy, or diaphysectomy) bone (eg, osteomyelitis or bossing); tarsal or metatarsal bone, except talus or calcaneus
45% lower than market
Partial removal of bone with release of spinal cord or spinal nerves of 1 interspace in lower spine
Partial removal of bone with release of spinal cord or spinal nerves of 1 interspace in lower spine
41% lower than market
Partial removal of breast
Partial removal of breast
49% lower than market
Partial removal of collar bone at shoulder using an endoscope
Partial removal of collar bone at shoulder using an endoscope
29% lower than market
Partial removal of external female genitals, simple
Partial removal of external female genitals, simple
66% lower than market
Partial removal of knee joint lining using an endoscope
Partial removal of knee joint lining using an endoscope
7% lower than market
Partial removal of toe bone
Partial removal of toe bone
7% higher than market
Percutaneous vertebral augmentation, including cavity creation (fracture reduction and bone biopsy included when performed) using mechanical device (eg, kyphoplasty), 1 vertebral body, unilateral or bilateral cannulation, inc
Percutaneous vertebral augmentation, including cavity creation (fracture reduction and bone biopsy included when performed) using mechanical device (eg, kyphoplasty), 1 vertebral body, unilateral or bilateral cannulation, inc
4% lower than market
Release of lower spinal cord and/or nerves
Release of lower spinal cord and/or nerves
9% higher than market
Release of shoulder biceps tendon using an endoscope
Release of shoulder biceps tendon using an endoscope
10% lower than market
Removal (3 centimeters or greater) tissue growth beneath the skin of upper arm or elbow
Removal (3 centimeters or greater) tissue growth beneath the skin of upper arm or elbow
69% lower than market
Removal (less than 3 centimeters) tissue growth beneath the skin of upper arm or elbow
Removal (less than 3 centimeters) tissue growth beneath the skin of upper arm or elbow
43% lower than market
Removal impacted cerumen using irrigation/lavage, unilateral
Removal impacted cerumen using irrigation/lavage, unilateral
66% lower than market
Removal of (less than 3 centimeters) tissue growth beneath the skin of neck or front of chest
Removal of (less than 3 centimeters) tissue growth beneath the skin of neck or front of chest
80% lower than market
Removal of 1 or more breast growth, open procedure
Removal of 1 or more breast growth, open procedure
46% lower than market
Colonoscopy with removal of polyp(s)
Colonoscopy with removal of polyp(s)
A flexible colonoscopy is performed with removal of tumors, polyps, or other lesions by hot biopsy forceps or snare technique. The colonoscope is inserted into the rectum and advanced through the colon to the cecum or a point within the terminal ileum, using air insufflation to separate the mucosal folds for better visualization. Mucosal surfaces of the colon are inspected and any abnormalities are noted. The tumor, polyp, or other lesion is identified. Hot biopsy method uses insulated monopolar forceps to remove and electrocoagulate (cauterize) tissue simultaneously. Hot biopsy forceps are used primarily for removal of small polyps and treatment of vascular ectasias. A wire snare loop is placed around the lesion. The loop is heated to shave off and cauterize the lesion. Lesions may be removed en bloc with one placement of the snare or in a piecemeal fashion which requires multiple applications of the snare. The endoscope is withdrawn and mucosal surfaces are again inspected for ulcerations, bleeding sites, lesions, strictures, or other abnormalities.
83% lower than market
Removal of bone joints between wrist and fingers
Removal of bone joints between wrist and fingers
44% lower than market
Removal of both knee cartilages using an endoscope
Removal of both knee cartilages using an endoscope
33% lower than market
Removal of cyst at wrist (dorsal or volar); primary
Removal of cyst at wrist (dorsal or volar); primary
Approximately equal to market
Removal of dead or infected ankle joint tissue using an endoscope
Removal of dead or infected ankle joint tissue using an endoscope
11% lower than market
Removal of deep bone implant
Removal of deep bone implant
71% lower than market
Removal of fluid accumulation in one testicle and sperm reservoir
Removal of fluid accumulation in one testicle and sperm reservoir
52% lower than market
Removal of fluid from chest cavity with imaging guidance
Removal of fluid from chest cavity with imaging guidance
34% lower than market
Removal of fluid-filled sac (bursa) or calcium deposit of pelvis
Removal of fluid-filled sac (bursa) or calcium deposit of pelvis
5% lower than market
Removal of foreign bodies of esophagus, stomach, and/or upper small bowel using an endoscope
Removal of foreign bodies of esophagus, stomach, and/or upper small bowel using an endoscope
21% lower than market
Removal of foreign body from ear canal
Removal of foreign body from ear canal
9% lower than market
Removal of gallbladder with X-ray study of bile ducts using endoscope
Removal of gallbladder with X-ray study of bile ducts using endoscope
68% lower than market
Removal of growth of tendon covering or joint capsule of foot
Removal of growth of tendon covering or joint capsule of foot
73% lower than market
Removal of growth of tendon finger or hand
Removal of growth of tendon finger or hand
69% lower than market
Removal of heel bone
Removal of heel bone
62% lower than market
Removal of impact ear wax, one ear
Removal of impact ear wax, one ear
Procedure performed in the clinic to remove impacted ear wax (cerumen)
56% lower than market
Removal of joint lining from two or more knee joint compartments using an endoscope
Removal of joint lining from two or more knee joint compartments using an endoscope
2% lower than market
Removal of multiple wrist bones
Removal of multiple wrist bones
18% lower than market
Removal of nail
Removal of nail
79% lower than market
Removal of peripheral venous catheter for infusion
Removal of peripheral venous catheter for infusion
72% lower than market
Removal of shoulder joint tissue using an endoscope
Removal of shoulder joint tissue using an endoscope
56% lower than market
Removal of tissue and/or bone at elbow with tendon repair, open procedure
Removal of tissue and/or bone at elbow with tendon repair, open procedure
43% lower than market
Removal of tissue from 6 or more finger or toe nails
Removal of tissue from 6 or more finger or toe nails
73% lower than market
Repair of Wound (2.6 to 7.5 centimeters)
Repair of Wound (2.6 to 7.5 centimeters)
Simple repair of superficial wounds of the scalp, neck, axillae, external genitalia, trunk, and/or extremities is performed. The wound is cleansed and a local anesthetic is administered. The wound is inspected and determined to be superficial involving only the epidermis, dermis, or subcutaneous tissue without involvement of deeper tissues and without heavy contamination. A simple, one-layer closure using sutures, staples, or tissue adhesive is performed. Alternatively, chemical cautery or electrocautery may be used to treat the wound without closure.
3% higher than market
Repair of Wound (7.6 to 12.5 cm)
Repair of Wound (7.6 to 12.5 cm)
Simple repair of superficial wounds of the scalp, neck, axillae, external genitalia, trunk, and/or extremities is performed. The wound is cleansed and a local anesthetic is administered. The wound is inspected and determined to be superficial involving only the epidermis, dermis, or subcutaneous tissue without involvement of deeper tissues and without heavy contamination. A simple, one-layer closure using sutures, staples, or tissue adhesive is performed. Alternatively, chemical cautery or electrocautery may be used to treat the wound without closure.
5% lower than market
Repair of groin hernia patient age 5 years or older
Repair of groin hernia patient age 5 years or older
An initial inguinal hernia repair is performed on a patient who is five years or older. An inguinal hernia is a condition where structures protrude through a weakness in the abdominal wall in the groin area. Incarcerated hernia tissue cannot be pushed back into its normal position. Strangulated hernias are those in which circulation is compromised. An incision is made over the internal ring. The skin, fat, and subcutaneous fascia are incised down to the aponeurosis of the external oblique muscle. The external ring is identified and the external oblique aponeurosis is slit. The internal ring is opened and the inguinal canal is exposed. In males, the spermatic cord and its covering are mobilized and the covering is removed. The hernia sac is dissected free into the retroperitoneum, opened, and inspected for the presence of bowel or bladder wall. Any bowel or bladder content is reduced (pushed back into the abdominal cavity) and the hernia sac is transected and inverted into the abdominal cavity. A mesh plug may be placed to reinforce the repair. In women, the sac is inspected for the ovary. If the ovary is present, it is returned to the abdomen. The sac is then resected together with the round ligament. The internal ring is closed and the posterior wall of the inguinal canal is repaired.
70% lower than market
Repair of muscle group above knee joint
Repair of muscle group above knee joint
59% lower than market
Repair of ruptured musculotendinous cuff (eg, rotator cuff) open; chronic
Repair of ruptured musculotendinous cuff (eg, rotator cuff) open; chronic
20% lower than market
Repair of shoulder socket cartilage using an endoscope
Repair of shoulder socket cartilage using an endoscope
1% lower than market
Repair of wound (2.6 to 5.0 centimeters) of face, ears, eyelids, nose, lips, and/or mouth
Repair of wound (2.6 to 5.0 centimeters) of face, ears, eyelids, nose, lips, and/or mouth
8% higher than market
Repair of wound (2.6 to 7.5 centimeters) of the scalp, underarms, trunk, arms, and/or legs
Repair of wound (2.6 to 7.5 centimeters) of the scalp, underarms, trunk, arms, and/or legs
61% lower than market
Repair, flexor tendon, leg; primary, without graft, each tendon
Repair, flexor tendon, leg; primary, without graft, each tendon
41% lower than market
Reprogramming of programmable brain and spinal fluid shunt
Reprogramming of programmable brain and spinal fluid shunt
14% lower than market
Rotator Cuff Repair
Rotator Cuff Repair
26% lower than market
Second repair of surgical wound
Second repair of surgical wound
4% lower than market
Shaving of shoulder bone using an endoscope
Shaving of shoulder bone using an endoscope
47% lower than market
Shoulder scope with debridement
Shoulder scope with debridement
45% lower than market
Sigmoidoscopy, flexible; with removal of tumor(s), polyp(s), or other lesion(s) by snare technique
Sigmoidoscopy, flexible; with removal of tumor(s), polyp(s), or other lesion(s) by snare technique
27% lower than market
Simple wound repair of face, including ears; 2.5 cm or less
Simple wound repair of face, including ears; 2.5 cm or less
6% lower than market
Simple wound repair of face, including ears; 2.6 cm to 5.0 cm
Simple wound repair of face, including ears; 2.6 cm to 5.0 cm
5% higher than market
Simple wound repair of scalp, neck, external genitalia; 2.5 cm or less
Simple wound repair of scalp, neck, external genitalia; 2.5 cm or less
Simple repair of superficial wounds of the scalp, neck, axillae, external genitalia, trunk, and/or extremities is performed. The wound is cleansed and a local anesthetic is administered. The wound is inspected and determined to be superficial involving only the epidermis, dermis, or subcutaneous tissue without involvement of deeper tissues and without heavy contamination. A simple, one-layer closure using sutures, staples, or tissue adhesive is performed. Alternatively, chemical cautery or electrocautery may be used to treat the wound without closure.
23% lower than market
Suture of ruptured muscle of thigh; primary
Suture of ruptured muscle of thigh; primary
58% lower than market
Total knee repair
Total knee repair
64% lower than market
Trigger Finger Release
Trigger Finger Release
1% higher than market
Trimming of fingernails or toenails
Trimming of fingernails or toenails
61% lower than market
Ulnar Nerve Release
Ulnar Nerve Release
32% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT TRANSPORTATION CHARGES
OUTPATIENT TRANSPORTATION CHARGES
Description
Variance
Ambulance service, advanced life support, emergency transport, level 1 (als 1 - emergency)
Ambulance service, advanced life support, emergency transport, level 1 (als 1 - emergency)
11% lower than market
Ambulance service, advanced life support, non-emergency transport, level 1 (als 1)
Ambulance service, advanced life support, non-emergency transport, level 1 (als 1)
25% lower than market
Ambulance service, basic life support, non-emergency transport, (bls)
Ambulance service, basic life support, non-emergency transport, (bls)
19% lower than market
Ground mileage, per statute mile
Ground mileage, per statute mile
23% lower than market
Memorial Hospital of Converse County Patient Information Price List
OUTPATIENT X-RAY AND RADIOLOGICAL CHARGES
OUTPATIENT X-RAY AND RADIOLOGICAL CHARGES
The following charges reflect our most common x-ray and radiological procedures. For all exams requiring contrast, the contrast will be charged separately.
Description
Variance
Breast Ultrasound - Complete
Breast Ultrasound - Complete
A real time ultrasound of the right or left breast is performed with image documentation, including the axillary area, when performed. Breast ultrasound is used to help diagnose breast abnormalities detected during a physical exam or on mammography. Ultrasound imaging can identify masses as solid or fluid-filled and can show additional structural features of the abnormal area and surrounding tissues. The patient is placed supine with the arm raised above the head on the side being examined. Acoustic coupling gel is applied to the breast and the transducer is pressed firmly against the skin of the breast. The transducer is then swept back and forth over the area of the abnormality and images are obtained. The ultrasonic wave pulses directed at the breast are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the breast and provides a written interpretation.
1% lower than market
CT Abdomen & Pelvis with Contrast
CT Abdomen & Pelvis with Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the abdomen and pelvis. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans. The CT scan is then performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the abdomen and pelvis. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data which is then displayed on the monitor as two-dimensional cross-sectional images of the abdomen or pelvis. The physician reviews the data and images as they are obtained and may request additional sections to provide more detail on areas of interest.
6% higher than market
CT Abdomen with Contrast
CT Abdomen with Contrast
Diagnostic computed tomography (CT) is done on the abdomen to provide detailed visualization of the tissues and organs within the abdominal area. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the abdomen. The physician reviews the images for the cause of abdominal pain, swelling, and fever; for other suspected problems such as appendicitis and kidney stones; for locating tumors, abscesses, or masses; or for evaluating the abdominal area for hernias, infections, or internal injury. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings.
7% lower than market
CT Abdomen with and without Contrast
CT Abdomen with and without Contrast
Diagnostic computed tomography (CT) is done on the abdomen to provide detailed visualization of the tissues and organs within the abdominal area. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the abdomen. The physician reviews the images for the cause of abdominal pain, swelling, and fever; for other suspected problems such as appendicitis and kidney stones; for locating tumors, abscesses, or masses; or for evaluating the abdominal area for hernias, infections, or internal injury. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings.
2% higher than market
CT Abdomen without Contrast
CT Abdomen without Contrast
Diagnostic computed tomography (CT) is done on the abdomen to provide detailed visualization of the tissues and organs within the abdominal area. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the abdomen. The physician reviews the images for the cause of abdominal pain, swelling, and fever; for other suspected problems such as appendicitis and kidney stones; for locating tumors, abscesses, or masses; or for evaluating the abdominal area for hernias, infections, or internal injury. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings.
1% higher than market
CT Angiogram Abdomen with and without Contrast
CT Angiogram Abdomen with and without Contrast
A computed tomographic angiography (CTA) of the abdomen is performed with contrast material including image postprocessing. Noncontrast images may also be obtained and are included when performed. CTA provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images may be obtained. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the blood vessels of the abdomen.
2% higher than market
CT Angiogram Chest with and without Contrast
CT Angiogram Chest with and without Contrast
A computed tomographic angiography (CTA) of the noncoronary vessels of the chest is performed with contrast material including image postprocessing. Noncontrast images may also be obtained and are included when performed. CTA provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images may be obtained. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the noncoronary vessels of the chest.
Approximately equal to market
CT Angiogram Head with and without Contrast
CT Angiogram Head with and without Contrast
A computed tomographic angiography (CTA) of the head is performed with contrast material including image postprocessing. Noncontrast images may also be obtained and are included when performed. CTA provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images may be obtained. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the head.
4% higher than market
CT Angiogram Neck with and without Contrast
CT Angiogram Neck with and without Contrast
A computed tomographic angiography (CTA) of the neck is performed with contrast material including image postprocessing. Noncontrast images may also be obtained and are included when performed. CTA provides images of the blood vessels using a combination of computed tomography (CT) and angiography with contrast material. When angiography is performed using CT, multiple images are obtained and processed on a computer to create detailed, two-dimensional, cross-sectional views of the blood vessels. These images are then displayed on a computer monitor. The patient is positioned on the CT table. An intravenous line is inserted into a blood vessel, usually in the arm or hand. Non-contrast images may be obtained. A small dose of contrast is injected and test images are obtained to verify correct positioning. The CTA is then performed. Contrast is injected at a controlled rate and the CT table moves through the CT machine as the scanning is performed. After completion of the CTA, the radiologist reviews and interprets the CTA images of the neck.
6% higher than market
CT Arm with Contrast
CT Arm with Contrast
Diagnostic computed tomography (CT) is done on the upper extremity to provide detailed visualization of the tissues and bone structure of the arm. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the arm can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the upper extremity. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings. The physician reviews the images to look for suspected problems with the arm such as locating tumors, abscesses, or masses; evaluating the bones for degenerative conditions, fractures, or other injury following trauma; and finding the cause of pain or swelling.
2% lower than market
CT Chest with Contrast
CT Chest with Contrast
Diagnostic computed tomography (CT) is done on the thorax. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and reconstructs a 3D image. Thin, cross-sectional 2D and 3D slices are then produced of the targeted organ or area. The patient is placed inside the CT scanner on the table and images are obtained of the thorax to look for problems or disease in the lungs, heart, esophagus, soft tissue, or major blood vessels of the chest, such as the aorta. The physician reviews the images to look for suspected disease such as infection, lung cancer, pulmonary embolism, aneurysms, and metastatic cancer to the chest from other areas.
1% higher than market
CT Chest with and without Contrast
CT Chest with and without Contrast
Diagnostic computed tomography (CT) is done on the thorax. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and reconstructs a 3D image. Thin, cross-sectional 2D and 3D slices are then produced of the targeted organ or area. The patient is placed inside the CT scanner on the table and images are obtained of the thorax to look for problems or disease in the lungs, heart, esophagus, soft tissue, or major blood vessels of the chest, such as the aorta. The physician reviews the images to look for suspected disease such as infection, lung cancer, pulmonary embolism, aneurysms, and metastatic cancer to the chest from other areas.
5% higher than market
CT Chest without Contrast
CT Chest without Contrast
Diagnostic computed tomography (CT) is done on the thorax. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and reconstructs a 3D image. Thin, cross-sectional 2D and 3D slices are then produced of the targeted organ or area. The patient is placed inside the CT scanner on the table and images are obtained of the thorax to look for problems or disease in the lungs, heart, esophagus, soft tissue, or major blood vessels of the chest, such as the aorta. The physician reviews the images to look for suspected disease such as infection, lung cancer, pulmonary embolism, aneurysms, and metastatic cancer to the chest from other areas.
1% higher than market
CT Cranial Cavity without Contrast
CT Cranial Cavity without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the eye socket (orbit); region that houses the pituitary gland (sella); region at the base of the skull (posterior fossa); or any portion of the ear (outer, middle, or inner) is obtained. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest. The physician reviews the CT scan, notes any abnormalities, and provides a written interpretation of the findings.
2% lower than market
CT Face without Contrast
CT Face without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the maxillofacial area is obtained. The maxillofacial area includes the forehead (frontal bone), sinuses, nose and nasal bones, jaw (maxilla and mandible). The only facial region not included in this study is the orbit. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
6% higher than market
CT Head Brain with Contrast
CT Head Brain with Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the head or brain is performed. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
1% lower than market
CT Head Brain with and without Contrast
CT Head Brain with and without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the head or brain is performed. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
9% higher than market
CT Head Brain without Contrast
CT Head Brain without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In this study, CT scan of the head or brain is performed. The patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
4% higher than market
CT Leg with Contrast
CT Leg with Contrast
Diagnostic computed tomography (CT) is done on the lower extremity to provide detailed visualization of the tissues and bone structure of the leg. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the leg can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the lower extremity.
15% lower than market
CT Leg without Contrast
CT Leg without Contrast
Diagnostic computed tomography (CT) is done on the lower extremity to provide detailed visualization of the tissues and bone structure of the leg. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the leg can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the lower extremity.
10% higher than market
CT Neck with Contrast
CT Neck with Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In a CT scan of the soft tissues of the neck, the patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
7% higher than market
CT Neck without Contrast
CT Neck without Contrast
Computerized tomography, also referred to as a CT scan, uses special x-ray equipment and computer technology to produce multiple cross-sectional images of the region being studied. In a CT scan of the soft tissues of the neck, the patient is positioned on the CT examination table. An initial pass is made through the CT scanner to determine the starting position of the scans, after which the CT scan is performed. As the table moves slowly through the scanner, numerous x-ray beams and electronic x-ray detectors rotate around the body region being examined. The amount of radiation being absorbed is measured. As the beams and detectors rotate around the body, the table is moved through the scanner. A computer program processes the data and renders the data in two-dimensional cross-sectional images of the body region being examined. This data is displayed on a monitor. The physician reviews the data as it is being obtained and may request additional sections to provide more detail of areas of interest.
7% higher than market
CT Pelvis with Contrast
CT Pelvis with Contrast
Diagnostic computed tomography (CT) is done on the pelvis to provide detailed visualization of the organs and structures within or near the pelvis, such as kidneys, bladder, prostate, uterus, cervix, vagina, lymph nodes, and pelvic bones. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of organs within the pelvis can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the pelvis area. The physician reviews the images to gather information for specified purposes such as diagnosing or monitoring cancer, evaluating the pelvic bones for fractures or other injury following trauma, locating abscesses or masses found during physical exam, finding the cause of pelvic pain, providing more detailed information before surgery, and evaluating the patient after surgery.
2% lower than market
CT Spine Cervical without Contrast
CT Spine Cervical without Contrast
Diagnostic computed tomography (CT) is done on the cervical spine. CT uses multiple, narrow x-ray beams aimed around a single rotational axis, taking a series of 2D images of the target structure from multiple angles. Contrast material is used to enhance the images. Computer software processes the data and produces several images of thin, cross-sectional 2D slices of the targeted organ or area. Three-dimensional models of the spine can be created by stacking multiple, individual 2D slices together. The patient is placed inside the CT scanner on the table and images are obtained of the cervical spine.
8% higher than market
CT scan of heart with evaluation of blood vessel calcium
CT scan of heart with evaluation of blood vessel calcium
57% lower than market
Chest X-Ray; 2 Views
Chest X-Ray; 2 Views
A radiologic examination of the chest is performed. Chest radiographs (X-rays) provide images of the heart, lungs, bronchi, major blood vessels (aorta, vena cava, pulmonary vessels), and bones, (sternum, ribs, clavicle, scapula, spine). The most common views are frontal (also referred to as anteroposterior or AP), posteroanterior (PA), and lateral. To obtain a frontal view, the patient is positioned facing the x-ray machine. A PA view is obtained with the patient's back toward the x-ray machine. For a lateral view, the patient is positioned with side of the chest toward the machine. Other views that may be obtained include apical lordotic, oblique, and lateral decubitus. An apical lordotic image provides better visualization of the apical (top) regions of the lungs. The patient is positioned with the back arched so that the tops of the lungs can be x-rayed. Oblique views may be obtained to evaluate a pulmonary or mediastinal mass or opacity or to provide additional images of the heart and great vessels. There are four positions used for oblique views including right and left anterior oblique, and right and left posterior oblique. Anterior oblique views are obtained with the patient standing and the chest rotated 45 degrees. The arm closest to the x-ray cassette is flexed with the hand resting on the hip. The opposite arm is raised as high as possible. The part of the chest farthest away from the x-ray cassette is the area being studied. Posterior oblique views are typically obtained only when the patient is too ill to stand or lay prone for anterior oblique views. A lateral decubitus view is obtained with the patient lying on the side; the patient's head rests on one arm, and the other arm is raised over the head with the elbow bent. Images are recorded on hard copy film or stored electronically as digital images. The physician reviews the images, notes any abnormalities, and provides a written interpretation of the findings.
Approximately equal to market
Chest X-Ray; Single View
Chest X-Ray; Single View
A radiologic examination of the chest is performed. Chest radiographs (X-rays) provide images of the heart, lungs, bronchi, major blood vessels (aorta, vena cava, pulmonary vessels), and bones, (sternum, ribs, clavicle, scapula, spine). The most common views are frontal (also referred to as anteroposterior or AP), posteroanterior (PA), and lateral. To obtain a frontal view, the patient is positioned facing the x-ray machine. A PA view is obtained with the patient's back toward the x-ray machine. For a lateral view, the patient is positioned with side of the chest toward the machine. Other views that may be obtained include apical lordotic, oblique, and lateral decubitus. An apical lordotic image provides better visualization of the apical (top) regions of the lungs. The patient is positioned with the back arched so that the tops of the lungs can be x-rayed. Oblique views may be obtained to evaluate a pulmonary or mediastinal mass or opacity or to provide additional images of the heart and great vessels. There are four positions used for oblique views including right and left anterior oblique, and right and left posterior oblique. Anterior oblique views are obtained with the patient standing and the chest rotated 45 degrees. The arm closest to the x-ray cassette is flexed with the hand resting on the hip. The opposite arm is raised as high as possible. The part of the chest farthest away from the x-ray cassette is the area being studied. Posterior oblique views are typically obtained only when the patient is too ill to stand or lay prone for anterior oblique views. A lateral decubitus view is obtained with the patient lying on the side; the patient's head rests on one arm, and the other arm is raised over the head with the elbow bent. Images are recorded on hard copy film or stored electronically as digital images. The physician reviews the images, notes any abnormalities, and provides a written interpretation of the findings.
9% lower than market
Diagnostic mammography, bilateral
Diagnostic mammography, bilateral
These codes report diagnostic mammography of one breast or both breasts with computer-aided lesion detection (CAD), when performed. Mammography is the radiographic imaging of the breast using low-dose ionizing radiation. The x-rays used in mammography have a longer wavelength that those typically used for bone imaging. The test is done to detect tumors or cysts in women who have symptoms of breast disease or a palpable mass. The breast is compressed between planes on a machine dedicated strictly to mammography. This evens out the dense tissue and holds the breast still for a better quality image. Computer-aided detection uses algorithm analysis of the image data obtained from the mammographic films, with or without digitization of the radiographic images. The mammographic picture of the breast is used by scanning the x-ray film with a laser beam, usually converting the scanned image of the analog film into digital data for the computer first, then employing a methodical, step-by-step pattern of analyzing the data on video display for unusual or suspicious areas.
2% higher than market
Diagnostic mammography, unilateral
Diagnostic mammography, unilateral
These codes report diagnostic mammography of one breast or both breasts with computer-aided lesion detection (CAD), when performed. Mammography is the radiographic imaging of the breast using low-dose ionizing radiation. The x-rays used in mammography have a longer wavelength that those typically used for bone imaging. The test is done to detect tumors or cysts in women who have symptoms of breast disease or a palpable mass. The breast is compressed between planes on a machine dedicated strictly to mammography. This evens out the dense tissue and holds the breast still for a better quality image. Computer-aided detection uses algorithm analysis of the image data obtained from the mammographic films, with or without digitization of the radiographic images. The mammographic picture of the breast is used by scanning the x-ray film with a laser beam, usually converting the scanned image of the analog film into digital data for the computer first, then employing a methodical, step-by-step pattern of analyzing the data on video display for unusual or suspicious areas.
16% higher than market
Fluoroscopic guidance for spine or spinal canal injection
Fluoroscopic guidance for spine or spinal canal injection
38% lower than market
Imaging guidance for procedure, up to 1 hour
Imaging guidance for procedure, up to 1 hour
21% lower than market
Imaging of Abdomen and Chest
Imaging of Abdomen and Chest
A radiologic examination of the abdomen images the internal organs, soft tissue (muscle, fat), and supporting skeleton. X-ray imaging uses indirect ionizing radiation to take pictures of non-uniform material, such as human tissue, because of its different density and composition, which allows some of the x-rays to be absorbed and some to pass through and be captured. This produces a 2D image of the structures. The radiographs may be taken to look for size, shape, and position of organs, pattern of air (bowel gas), obstruction, foreign objects, and calcification in the gallbladder, urinary tract, and aorta. A radiologic examination of the abdomen may be ordered to diagnose abdominal distention and pain, vomiting, diarrhea or constipation, and traumatic injury; it may also be obtained as a screening exam or scout film prior to other imagining procedures.
6% higher than market
Imaging of Abdomen; Single View
Imaging of Abdomen; Single View
A radiologic examination of the abdomen images the internal organs, soft tissue (muscle, fat), and supporting skeleton. X-ray imaging uses indirect ionizing radiation to take pictures of non-uniform material, such as human tissue, because of its different density and composition, which allows some of the x-rays to be absorbed and some to pass through and be captured. This produces a 2D image of the structures. The radiographs may be taken to look for size, shape, and position of organs, pattern of air (bowel gas), obstruction, foreign objects, and calcification in the gallbladder, urinary tract, and aorta. A radiologic examination of the abdomen may be ordered to diagnose abdominal distention and pain, vomiting, diarrhea or constipation, and traumatic injury; it may also be obtained as a screening exam or scout film prior to other imagining procedures. Common views of the abdomen include front to back anteroposterior (AP) with the patient lying supine or standing erect, back to front posteroanterior (PA) with the patient lying prone, lateral with the patient lying on the side, lateral decubitus anteroposterior (side lying, front to back view), lateral dorsal decubitus (lying supine, side view), oblique (anterior or posterior rotation), and coned (small collimated) views which may be used to localize and differentiate lesions, calcifications, or herniations.
7% higher than market
Imaging of Liver and Bile Duct System with Use of Drugs
Imaging of Liver and Bile Duct System with Use of Drugs
Hepatobiliary system nuclear imaging tracks the production and flow of bile from the liver to the small intestine using a radioactive tracer that highlights the liver, bile ducts, and gallbladder if the gallbladder has not been surgically removed. This procedure may also be referred to as a HIDA scan which stands for hepatobiliary iminodiacetic acid scan. The procedure is performed to evaluate liver function, specifically bile production and excretion, and to evaluate the drainage system (bile ducts) and gallbladder for obstruction, inflammation, or other abnormalities. An intravenous catheter is placed. The radioactive tracer is injected. A gamma camera travels back and forth over the abdomen and multiple images are obtained as the radioactive tracer flows through the bloodstream and is taken up by the bile-producing cells in the liver. Images are obtained continuously as the radioactive tracer, which is now contained in the bile, travels from the liver through the biliary ducts into the gallbladder, and then from the gallbladder through the common bile duct into the duodenum. The patient is monitored throughout the procedure. Upon completion, the physician reviews the images and provides a written report of findings. The procedure is performed as described above except that during the procedure additional medications are administered. These medications may be given to enhance the gallbladder images or to trigger the gallbladder to empty. The physician may also perform a test called gallbladder ejection fraction which is a measurement of the rate at which bile is released from the gallbladder.
56% lower than market
Imaging of Liver and Bile Duct System without Use of Drugs
Imaging of Liver and Bile Duct System without Use of Drugs
Hepatobiliary system nuclear imaging tracks the production and flow of bile from the liver to the small intestine using a radioactive tracer that highlights the liver, bile ducts, and gallbladder if the gallbladder has not been surgically removed. This procedure may also be referred to as a HIDA scan which stands for hepatobiliary iminodiacetic acid scan. The procedure is performed to evaluate liver function, specifically bile production and excretion, and to evaluate the drainage system (bile ducts) and gallbladder for obstruction, inflammation, or other abnormalities. An intravenous catheter is placed. The radioactive tracer is injected. A gamma camera travels back and forth over the abdomen and multiple images are obtained as the radioactive tracer flows through the bloodstream and is taken up by the bile-producing cells in the liver. Images are obtained continuously as the radioactive tracer, which is now contained in the bile, travels from the liver through the biliary ducts into the gallbladder, and then from the gallbladder through the common bile duct into the duodenum. The patient is monitored throughout the procedure. Upon completion, the physician reviews the images and provides a written report of findings.
57% lower than market
Imaging of lymphatic tissue and lymph node
Imaging of lymphatic tissue and lymph node
17% lower than market
Imaging of parathyroid with nuclear medicine study
Imaging of parathyroid with nuclear medicine study
20% lower than market
Low dose ct scan (ldct) for lung cancer screening
Low dose ct scan (ldct) for lung cancer screening
78% lower than market
MRA Head without Contrast
MRA Head without Contrast
Magnetic resonance angiography (MRA) is performed on the head without contrast materials, with contrast materials, and without contrast materials followed by contrast materials. MRA is a noninvasive radiology procedure used to evaluate arterial and venous vessels for conditions such as atherosclerotic stenosis, arterial dissection, acute thrombosis, aneurysms or pseudo-aneurysms, vascular loops, vascular malformations/tumors, or arterial causes of pulsatile tinnitus. MRA may be performed following vascular surgery on the intracranial vessels to assess vascular status. MRA uses a magnetic field and pulses of radiowave energy to provide images of the blood vessels. Multiple images, 1-2 mm in thickness, are obtained and then processed using an array algorithm to produce maximum intensity projections (MIPs). MIPs are similar to subtraction angiograms. Areas of interest are identified by the radiologist and coned down to produce detailed views of the arteries. This post-processing of the images is performed by a technologist. The MIPs are reviewed by the radiologist along with the initial MRA images. The radiologist provides a written interpretation of findings.
14% lower than market
MRA Neck without Contrast
MRA Neck without Contrast
Magnetic resonance angiography (MRA) is performed on the neck without contrast materials, with contrast materials, and without contrast materials followed by contrast materials. MRA is a noninvasive radiology procedure used to evaluate arterial and venous vessels for conditions such as atherosclerotic stenosis, arterial dissection, acute thrombosis, aneurysms or pseudo-aneurysms, vascular loops, vascular malformations/tumors, or arterial causes of pulsatile tinnitus. MRA may be performed following vascular surgery on the neck vessels to assess vascular status. MRA uses a magnetic field and pulses of radiowave energy to provide images of the blood vessels. Multiple images of 1-2 mm in thickness are obtained and then processed using an array algorithm to produce maximum intensity projections (MIPs). MIPs are similar to subtraction angiograms. Areas of interest are identified by the radiologist and coned down to produce detailed views of the arteries. This post-processing of the images is performed by a technologist. The MIPs are reviewed by the radiologist along with the initial MRA images. The radiologist provides a written interpretation of findings.
18% lower than market
MRI Abdomen with and without Contrast
MRI Abdomen with and without Contrast
Magnetic resonance imaging is done on the abdomen. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the abdomen. MRI is often done for trauma and suspected internal injury, and unexplained abdominal pain, swelling, and fever. MRI scans provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms, such as the location of tumors, abscesses, or masses; the presence of kidney stones, hernias, appendicitis or other infections, and internal injury.
2% higher than market
MRI Arm Join with Contrast
MRI Arm Join with Contrast
Magnetic resonance imaging is done on a joint of the upper or lower arm. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the joint. MRI scans on joints of the upper extremity are often done for injury, trauma, unexplained pain, redness, or swelling, and freezing of a joint with loss of motion. MRI scans provide clear images of areas that may be difficult to see on CT.
20% lower than market
MRI Arm Joint without Contrast
MRI Arm Joint without Contrast
Magnetic resonance imaging is done on a joint of the upper or lower arm. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the joint. MRI scans on joints of the upper extremity are often done for injury, trauma, unexplained pain, redness, or swelling, and freezing of a joint with loss of motion. MRI scans provide clear images of areas that may be difficult to see on CT.
5% higher than market
MRI Arm with and without Contrast
MRI Arm with and without Contrast
Magnetic resonance imaging is done on the upper or lower arm, other than a joint. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the arm. MRI scans of the arm are often done for injury, trauma, or unexplained pain and provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information for diagnosing tendinitis; muscle atrophy and other anomalous muscular development; lesions of soft tissue and bone; osteomyelitis; contusions, hematomas, and other masses that can be palpated on exam; and broken bones or other abnormal findings on x-ray or bone scan.
25% lower than market
MRI Arm without Contrast
MRI Arm without Contrast
Magnetic resonance imaging is done on the upper or lower arm, other than a joint. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the arm. MRI scans of the arm are often done for injury, trauma, or unexplained pain and provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information for diagnosing tendinitis; muscle atrophy and other anomalous muscular development; lesions of soft tissue and bone; osteomyelitis; contusions, hematomas, and other masses that can be palpated on exam; and broken bones or other abnormal findings on x-ray or bone scan.
7% higher than market
MRI Brain with and without Conrast
MRI Brain with and without Conrast
Magnetic resonance imaging is done on the brain. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. MRI of the brain provides reliable information for diagnosing the presence, location, and extent of tumors, cysts, or other masses; swelling and infection; vascular disorders or malformations, such as aneurysms and intracranial hemorrhage; disease of the pituitary gland; stroke; developmental and structural anomalies of the brain; hydrocephalus; and chronic conditions and diseases affecting the central nervous system such as headaches and multiple sclerosis.
6% higher than market
MRI Leg Joint with and without Contrast
MRI Leg Joint with and without Contrast
Magnetic resonance imaging is done on a joint of the upper or lower leg. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the joint. MRI scans on joints of the lower extremity are often done for injury, trauma, unexplained pain, redness, or swelling, and freezing of a joint with loss of motion. MRI scans provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information on the presence and extent of tumors, masses, or lesions within the joint; infection, inflammation, and swelling of soft tissue; muscle atrophy and other anomalous muscular development; and joint effusion and vascular necrosis.
14% lower than market
MRI Leg Joint without Contrast
MRI Leg Joint without Contrast
Magnetic resonance imaging is done on a joint of the upper or lower leg. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the joint. MRI scans on joints of the lower extremity are often done for injury, trauma, unexplained pain, redness, or swelling, and freezing of a joint with loss of motion. MRI scans provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information on the presence and extent of tumors, masses, or lesions within the joint; infection, inflammation, and swelling of soft tissue; muscle atrophy and other anomalous muscular development; and joint effusion and vascular necrosis.
7% higher than market
MRI Leg with and without Contrast
MRI Leg with and without Contrast
Magnetic resonance imaging is done on the upper or lower leg, other than a joint. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the leg. MRI scans of the leg are often done for injury, trauma, or unexplained pain and provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information for diagnosing tendinitis; muscle atrophy and other anomalous muscular development; lesions of soft tissue and bone; osteomyelitis; contusions, hematomas, and other masses that can be palpated on exam; and broken bones or other abnormal findings on x-ray or bone scan.
4% lower than market
MRI Leg without Contrast
MRI Leg without Contrast
Magnetic resonance imaging is done on the upper or lower leg, other than a joint. Magnetic resonance is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the leg. MRI scans of the leg are often done for injury, trauma, or unexplained pain and provide clear images of areas that may be difficult to see on CT. The physician reviews the images to look for information that may correlate to the patient's signs or symptoms. MRI provides reliable information for diagnosing tendinitis; muscle atrophy and other anomalous muscular development; lesions of soft tissue and bone; osteomyelitis; contusions, hematomas, and other masses that can be palpated on exam; and broken bones or other abnormal findings on x-ray or bone scan.
10% higher than market
MRI Orbit, Face, Neck with and without Contrast
MRI Orbit, Face, Neck with and without Contrast
Magnetic resonance imaging is done on the orbit, the face, and/or the neck. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of hydrogen atoms in the body. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which processes the signals and converts the data into tomographic, 3D images with very high resolution. Orbital MRI provides reliable information for diagnosing tumors of the eye; infection or inflammation of the lacrimal glands and other soft tissues around the eye as well as osteomyelitis of nearby bone; damage or deterioration of the optic nerve; vascular edema or hemangioma of the eye area; and orbital muscular disorders. It is often performed in cases of trauma. MRI of the face and neck region is used to detect problems and abnormalities occurring outside the skull in the mouth, tongue, pharynx, nasal and sinus cavities, salivary glands, and vocal cords. MRI provides information on the presence and extent of tumors, masses, or lesions; infection, inflammation, and swelling of soft tissue; vascular edema or lesions; muscular abnormalities; and vocal cord paralysis.
16% lower than market
MRI Pelvis with and without Contrast
MRI Pelvis with and without Contrast
Magnetic resonance imaging (MRI) is done on the pelvis and organs within the pelvic area. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and converts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the hip area. MRI scans of the pelvis are often done for injury, trauma, birth defects, or unexplained hip or pelvic pain.
4% lower than market
MRI Pelvis without Contrast
MRI Pelvis without Contrast
Magnetic resonance imaging (MRI) is done on the pelvis and organs within the pelvic area. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and converts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. Small coils that help transmit and receive the radiowaves may be placed around the hip area. MRI scans of the pelvis are often done for injury, trauma, birth defects, or unexplained hip or pelvic pain.
8% lower than market
MRI Spine Cervical with and without Contrast
MRI Spine Cervical with and without Contrast
Magnetic resonance imaging (MRI) is done on the cervical, thoracic, or lumbar spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and coverts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back/neck pain is unsuccessful and more aggressive treatments are considered or following surgery. Images are taken first without contrast and again after the administration of contrast to see the spinal area better. The physician reviews the images to look for specific information that may correlate to the patient's symptoms, such as abnormal spinal alignment; disease or injury of vertebral bodies; intervertebral disc herniation, degeneration, or dehydration; the size of the spinal canal to accommodate the cord and nerve roots; pinched or inflamed nerves; or any changes since surgery.
17% lower than market
MRI Spine Cervical without Contrast
MRI Spine Cervical without Contrast
Magnetic resonance imaging (MRI) is done on the cervical spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and converts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back/neck pain is unsuccessful and more aggressive treatments are considered or following surgery.
1% higher than market
MRI Spine Lumbar with and without Contrast
MRI Spine Lumbar with and without Contrast
Magnetic resonance imaging (MRI) is done on the cervical, thoracic, or lumbar spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and coverts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back/neck pain is unsuccessful and more aggressive treatments are considered or following surgery. Images are taken first without contrast and again after the administration of contrast to see the spinal area better. The physician reviews the images to look for specific information that may correlate to the patient's symptoms, such as abnormal spinal alignment; disease or injury of vertebral bodies; intervertebral disc herniation, degeneration, or dehydration; the size of the spinal canal to accommodate the cord and nerve roots; pinched or inflamed nerves; or any changes since surgery.
2% lower than market
MRI Spine Lumbar without Contrast
MRI Spine Lumbar without Contrast
Magnetic resonance imaging (MRI) is done on the lumbar spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and coverts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back pain is unsuccessful and more aggressive treatments are considered or following surgery. The physician reviews the images to look for specific information that may correlate to the patient's symptoms, such as abnormal spinal alignment; disease or injury of vertebral bodies; intervertebral disc herniation, degeneration, or dehydration; the size of the spinal canal to accommodate the cord and nerve roots; pinched or inflamed nerves; or any changes since surgery.
6% higher than market
MRI Spine Thoracic without Contrast
MRI Spine Thoracic without Contrast
Magnetic resonance imaging (MRI) is done on the thoracic spinal canal and contents. MRI is a noninvasive, non-radiating imaging technique that uses the magnetic properties of nuclei within hydrogen atoms of the body. The powerful magnetic field forces the hydrogen atoms to line up. Radiowaves are then transmitted within the strong magnetic field. Protons in the nuclei of different types of tissues emit a specific radiofrequency signal that bounces back to the computer, which records the images. The computer processes the signals and converts the data into tomographic, 3D, sectional images in slices with very high resolution. The patient is placed on a motorized table within a large MRI tunnel scanner that contains the magnet. MRI scans of the spine are often done when conservative treatment of back/neck pain is unsuccessful and more aggressive treatments are considered or following surgery.
2% higher than market
MRI scan of leg joint with contrast
MRI scan of leg joint with contrast
13% lower than market
MRI scan of lower spinal canal with contrast
MRI scan of lower spinal canal with contrast
24% lower than market
Myocardial Perfusion, Tomographic
Myocardial Perfusion, Tomographic
Myocardial perfusion imaging is a nuclear medicine procedure used to evaluate the heart muscle and blood flow to the heart. An intravenous line is inserted into a vein in the hand or arm. ECG leads are placed and a blood pressure cuff is placed on the arm. The patient lies flat on a table in the procedure room for myocardial perfusion imaging performed at rest. For a stress study, the patient is either on a treadmill or bike or an injection of a pharmacologic agent is administered to stress the heart. A radionuclide, also called a tracer, is injected into the intravenous line and allowed to circulate. The radionuclide localizes in healthy heart tissue. Ischemic heart tissue does not absorb the radionuclide. Images of the heart and great vessels are obtained using single photon emission computed tomography (SPECT). When SPECT images are obtained, the scanner rotates around the body to obtain images in multiple planes. The physician evaluates heart wall motion to determine how effective the heart muscle is in pumping blood through the heart and to the peripheral vascular system. Ejection fraction, which is the percentage of blood pumped out of the heart to the peripheral vascular system, is measured using either a first pass or gated technique. In a first pass technique, images are obtained as the blood circulates through the heart during the first pass of the radionuclide. In a gated technique, a series of images are obtained between heart beats. Using electrical signals from the heart, the camera captures a series of images as the heart rests, creating very sharp, high resolution images. Additional images are obtained as needed. The physician reviews the images, calculates the ejection fraction and quantifies other parameters of heart function based on the distribution of the radionuclide. The physician then provides a written report of findings.
9% higher than market
Nuclear Medicine Study of Lung Ventilation and Blood Circulation in the Lungs
Nuclear Medicine Study of Lung Ventilation and Blood Circulation in the Lungs
Pulmonary nuclear imaging studies are performed to evaluate lung function. There are two components of lung function, ventilation and perfusion. Ventilation refers to the ability of air to reach all areas of the lung. Perfusion refers to the circulation of blood throughout lung tissue. Nuclear studies use radioactive tracers to highlight lung structures and blood flow.
23% lower than market
Nuclear medicine study of bone and/or joint
Nuclear medicine study of bone and/or joint
9% higher than market
Radiologic exam, spine, entire thoracic and lumbar, including skull, cervical and sacral spine; 2 or 3 views
Radiologic exam, spine, entire thoracic and lumbar, including skull, cervical and sacral spine; 2 or 3 views
Approximately equal to market
Radiologic examination, abdomen; 3 or more views
Radiologic examination, abdomen; 3 or more views
9% higher than market
Radiological supervision and interpretation X-ray of bile and/or pancreatic ducts during surgery
Radiological supervision and interpretation X-ray of bile and/or pancreatic ducts during surgery
20% lower than market
Radiological supervision and interpretation X-ray of shoulder joint
Radiological supervision and interpretation X-ray of shoulder joint
29% lower than market
Screening Mammography, Bilateral, with CAD
Screening Mammography, Bilateral, with CAD
Bilateral screening mammography is done with computer-aided lesion detection (CAD), when performed. Mammography is the radiographic imaging of the breast using low-dose ionizing radiation. The x-rays used in mammography have a longer wavelength than those typically used for bone imaging. A screening mammogram is done on asymptomatic women for early breast cancer detection when there are no known palpable masses. This is done on both breasts with two views taken on each side. The breast is compressed between planes on a machine dedicated strictly to mammography. This evens out the dense tissue and holds the breast still for a better quality image. Computer-aided detection uses algorithm analysis of the image data obtained from the mammographic films, with or without digitization of the radiographic images. The mammographic picture of the breast is used by scanning the x-ray film with a laser beam, usually converting the scanned image of the analog film into digital data for the computer first, then employing a methodical, step-by-step pattern of analyzing the data on video display for unusual or suspicious areas.
27% higher than market
Stomach emptying study
Stomach emptying study
34% lower than market
Ultrasound Abdomen - Complete
Ultrasound Abdomen - Complete
A real time abdominal ultrasound is performed with image documentation. The patient is placed supine. Acoustic coupling gel is applied to the skin of the abdomen. The transducer is pressed firmly against the skin and swept back and forth over the abdomen and images obtained. The ultrasonic wave pulses directed at the abdomen are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the abdomen and provides a written interpretation.
12% higher than market
Ultrasound Behind Abdominal Cavity - Complete
Ultrasound Behind Abdominal Cavity - Complete
A real time retroperitoneal ultrasound is performed with image documentation. The patient is placed supine. Acoustic coupling gel is applied to the skin of the abdomen. The transducer is pressed firmly against the skin and swept back and forth over the abdomen and images obtained of the retroperitoneal area. The ultrasonic wave pulses directed at the retroperitoneum are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the retroperitoneum and provides a written interpretation.
10% higher than market
Ultrasound Behind Abdominal Cavity - Limited
Ultrasound Behind Abdominal Cavity - Limited
A real time retroperitoneal ultrasound is performed with image documentation. The patient is placed supine. Acoustic coupling gel is applied to the skin of the abdomen. The transducer is pressed firmly against the skin and swept back and forth over the abdomen and images obtained of the retroperitoneal area. The ultrasonic wave pulses directed at the retroperitoneum are imaged by recording the ultrasound echoes. Any abnormalities are evaluated to identify characteristics that might provide a definitive diagnosis. The physician reviews the ultrasound images of the retroperitoneum and provides a written interpretation.
3% higher than market
Ultrasound Blood Flow Outside the Brain
Ultrasound Blood Flow Outside the Brain
A vascular ultrasound study is performed to evaluate the extracranial arteries which include the common carotid and external carotid arteries. A duplex scan uses both B-mode and Doppler studies. A clear gel is placed on the skin over the arteries to be studied. A B-mode transducer is placed on the skin and real-time images of the artery are obtained. A Doppler probe within the B-mode transducer provides information on pattern and direction of blood flow in the artery. The B-mode transducer produces ultrasonic sound waves that move through the skin and bounce off the arteries when the probe is placed over the arteries at various locations and angles. The Doppler probe produces sound waves that bounce off blood cells moving within the artery. The reflected sound waves are sent to an amplifier that makes the sound waves audible. The pitch of the sound waves changes if there is reduced blood flow, or ceases altogether if a vessel is completely obstructed. A computer converts the sound waves to images that are overlaid with colors to produce video images showing the speed and direction of blood flow as well as any obstruction. Spectral Doppler analysis is performed to provide information on anatomy and hemodynamic function, including information on the presence of narrowing and plaque formation within the arteries. The physician reviews the duplex scan and provides a written interpretation of findings.
2% higher than market
Ultrasound Heart
Ultrasound Heart
The physician performs complete transthoracic real-time echocardiography with image documentation (2-D) including M-mode recording, if performed, with spectral Doppler and color flow Doppler echocardiography. Cardiac structure and dynamics are evaluated using a series of real-time tomographic images with multiple views recorded digitally or on videotape. Time-motion (M-mode) recordings are made as needed to allow dimensional measurement. Blood flow and velocity patterns within the heart, across valves and within the great vessels are evaluated by color flow Doppler. Normal blood flow patterns through these regions have a characteristic pattern defined by direction, velocity, duration, and timing throughout the cardiac cycle. Spectral Doppler by pulsed or continuous wave technique is used to evaluate antegrade flow through inflow and outflow tracts and cardiac valves. Multiple transducer positions or orientations may be required. The physician reviews the echocardiography images and orders additional images as needed to allow evaluation of any abnormalities. Digital or videotaped images are then reviewed by the physician. Abnormalities of cardiac structure or dynamics are noted. The extent of the abnormalities is evaluated and quantified. Any previous cardiac studies are compared to the current study and any quantitative or qualitative changes are identified. The physician provides an interpretation of the echocardiography with a written report of findings.
2% higher than market
Ultrasound Joint Soft Tissue - Limited
Ultrasound Joint Soft Tissue - Limited
Ultrasound, also referred to as sonography and echography, is a non-invasive imaging technique that uses high-frequency sound waves to evaluate tissues and structures. Nonvascular structures of the extremities that may be evaluated by ultrasound include periarticular soft tissue masses, muscles, tendons, nerves, ligaments, and joints. Common conditions that can be detected or evaluated by ultrasound include cystic lesions, solid tumors, abscesses, joint effusion, tendon tears, tendonitis, tenosynovitis, nerve compression, and stress fractures. Acoustic coupling gel is applied to the extremity to be examined. An ultrasound probe is placed against the skin and moved over the target joint area to be examined as sound waves pass through and bounce off extremity tissues and structures. The sound waves are reflected back to the receiving unit at varying speeds and converted into images. Longitudinal, transverse, and oblique images are obtained. The physician reviews the images and provides a written interpretation.
18% lower than market
Ultrasound Pelvis NonOB
Ultrasound Pelvis NonOB
A real time pelvic (non-obstetric) ultrasound is performed with image documentation to evaluate the uterus and cervix, ovaries, fallopian tubes, and bladder. Conditions evaluated include pelvic pain, abnormal bleeding, and palpable masses, such as ovarian cysts, uterine fibroids, or other pelvic masses. The patient presents with a full bladder. Acoustic coupling gel is applied to the skin of the lower abdomen. The transducer is pressed firmly against the skin and swept back and forth over the lower abdomen and images obtained of the uterus, ovaries, and surrounding pelvic structures. The ultrasonic wave pulses directed at the pelvic structures are imaged by recording the ultrasound echoes. Any abnormalities are evaluated. The physician reviews the ultrasound images and provides a written interpretation.
3% higher than market
Ultrasound Pelvis through Vagina
Ultrasound Pelvis through Vagina
A transvaginal ultrasound is performed to evaluate the non-pregnant uterus and other pelvic structures. Conditions that may be evaluated by transvaginal ultrasound include infertility, abnormal bleeding, unexplained pain, congenital anomalies of the ovaries and uterus, ovarian cysts and tumors, pelvic inflammatory disease, bladder abnormalities, and intrauterine device (IUD) location. The patient is asked to empty the bladder and then lies back with the feet in stirrups. A protective cover is placed over the transducer and acoustic coupling gel is applied. The transducer is inserted into the vagina. Images of the uterus, ovaries, and surrounding pelvic structures are obtained from different orientations of the transducer. The ultrasonic wave pulses directed at the pelvic structures are imaged by recording the ultrasound echoes. The uterus is examined and endometrial thickness is determined. The ovaries are examined and any ovarian masses are carefully evaluated. The bladder and other pelvic structures are examined and any abnormalities are noted. The physician reviews the transvaginal ultrasound images and provides a written interpretation.
13% higher than market
Ultrasound Pleural Effusion Chest
Ultrasound Pleural Effusion Chest
A real time ultrasound examination of chest including the mediastinum is performed with image documentation. Ultrasound may be used to evaluate mediastinum and surrounding soft tissue for lesions or masses. In children, ultrasound of the chest and mediastinum may also be used to definitively diagnose pneumonia, pleural effusion, diaphragmatic palsy, and bronchopulmonary sequestration following inconclusive findings on plain films. The patient is placed in a supine position with a pillow under the shoulders. The neck is extended slightly and the chin flexed. Acoustic coupling gel is applied to suprasternal and supraclavicular sites just lateral to the sternocleidomastoid bilaterally. The ultrasound probe is then used to obtain semicoronal, sagittal, parasagittal and oblique views of the soft tissues of the chest and mediastinum through suprasternal, paratracheal, and supraclavicular windows. Any abnormalities are evaluated to identify structure of origin, nature, internal architecture, and other characteristics that might provide a definitive diagnosis. The ultrasonic wave pulses directed at the soft tissues of the chest and mediastinum are imaged by recording the ultrasound echoes. The physician reviews the ultrasound images of the soft tissues of the chest and mediastinum and provides a written interpretation.
1% lower than market
Ultrasound Scrotum
Ultrasound Scrotum
An ultrasound examination of the scrotum and its contents is a non-invasive procedure that uses a transducer probe placed firmly against the skin to deliver high frequency sound waves and create a gray scale and/or color (Doppler) image of the internal anatomy. Ultrasound may be used to detect scrotal masses/tumors and undescended testicle(s), as well as to evaluate testicular torsion, scrotal injury or trauma, hydrocele(s), varicocele(s), and male infertility. Ultrasonic conduction gel is applied to the scrotum and the transducer probe is held against the skin and swept over the area. The images produced are captured on a screen and viewed in real-time and/or saved for later analysis.
6% lower than market
Ultrasound Veins of Both Arms or Legs
Ultrasound Veins of Both Arms or Legs
A vascular ultrasound study is performed to evaluate veins in the extremities. A duplex scan uses both B-mode and Doppler studies. A clear gel is placed on the skin of the extremity over the region to be studied. A B-mode transducer is placed on the skin and real-time images of the veins are obtained. A Doppler probe within the B-mode transducer provides information on the pattern and direction of blood flow in the veins. The B-mode transducer produces ultrasonic sound waves that move through the skin and bounce off the veins when the probe is moved over the region being studied. The Doppler probe produces sound waves that bounce off blood cells moving within the veins. The reflected sound waves are sent to an amplifier that makes the sound waves audible. The pitch of the sound waves changes if there is reduced blood flow, or ceases altogether if a vessel is completely obstructed. A computer converts the sound waves to images that are overlaid with colors to produce video images showing the speed and direction of blood flow as well as any obstruction. Spectral Doppler analysis is performed to provide information on anatomy and hemodynamic function. The duplex scan may include a baseline evaluation followed by additional scans obtained with compression or using other maneuvers that alter blood flow. The physician reviews the duplex scan and provides a written interpretation of findings.
12% lower than market
Ultrasound Veins of One Arm or Leg
Ultrasound Veins of One Arm or Leg
A vascular ultrasound study is performed to evaluate veins in the extremities. A duplex scan uses both B-mode and Doppler studies. A clear gel is placed on the skin of the extremity over the region to be studied. A B-mode transducer is placed on the skin and real-time images of the veins are obtained. A Doppler probe within the B-mode transducer provides information on the pattern and direction of blood flow in the veins. The B-mode transducer produces ultrasonic sound waves that move through the skin and bounce off the veins when the probe is moved over the region being studied. The Doppler probe produces sound waves that bounce off blood cells moving within the veins. The reflected sound waves are sent to an amplifier that makes the sound waves audible. The pitch of the sound waves changes if there is reduced blood flow, or ceases altogether if a vessel is completely obstructed. A computer converts the sound waves to images that are overlaid with colors to produce video images showing the speed and direction of blood flow as well as any obstruction. Spectral Doppler analysis is performed to provide information on anatomy and hemodynamic function. The duplex scan may include a baseline evaluation followed by additional scans obtained with compression or using other maneuvers that alter blood flow. The physician reviews the duplex scan and provides a written interpretation of findings.
Approximately equal to market
Ultrasound guidance for accessing into blood vessel
Ultrasound guidance for accessing into blood vessel
28% lower than market
Ultrasound scan of abdominal, pelvic, and/or scrotal arterial inflow and venous outflow
Ultrasound scan of abdominal, pelvic, and/or scrotal arterial inflow and venous outflow
13% lower than market
Whole Body Bone Scan
Whole Body Bone Scan
Bone and/or joint imaging using scintigraphy and a radiolabeled isotope tracer may be performed on patients who have unexplained skeletal pain suggestive of bone loss, infection, inflammation, or injury and traditional radiographics (planar x-rays) have failed to provide a diagnosis. An intravenous line is established and the radiolabeled isotope tracer is injected directly into the circulatory system. When inflammation is suspected, a blood sample is drawn and centrifuged to separate white blood cells (WBCs), which are then tagged with radioactive calcium and injected back into the patient. After a prescribed period of time, the patient is positioned on the imaging table with the gamma camera over the body. Scanning is performed at specific intervals and the radioactive energy emitted is converted into an image. The physician interprets the bone and/or joint imaging study and provides a written report of the findings.
10% higher than market
X-Ray Collar Bone
X-Ray Collar Bone
A complete radiologic examination of the clavicle is performed to determine fractures or dislocations. The most common type of fracture involves the middle third of the clavicle, followed by the lateral third distal to the coracoclavicular ligament. The least common type of clavicular fracture involves the proximal third. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. Radiographs are taken according to the suspected location of the injury. Standard evaluation includes an anteroposterior view focused on the midshaft wide enough to assess the acromioclavicular and sternoclavicular joints. Oblique views are also obtained with a cephalic tilt of 20-60 degrees.
1% higher than market
X-Ray Esophagus
X-Ray Esophagus
Oral contrast material is swallowed and the passage of the contrast is observed fluoroscopically as it passes through the pharynx and/or esophagus. Once the lumen of the pharynx and/or esophagus is completely coated with contrast material, still radiographic images are obtained. The physician reviews the images, notes any abnormalities, and provides a written interpretation of the findings.
1% lower than market
X-Ray Fingers, 2 Views
X-Ray Fingers, 2 Views
A radiologic examination of the finger(s) is done with at least 2 different projections taken. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, interphalangeal (IP) joint dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, or tumors. The posteroanterior projection is taken with the palm down flat, fingers extended, and slightly apart to show the metacarpals, phalanges, and IP joints of the target finger(s). Anteroposterior views are taken with the back of the hand placed on the film and the x-ray beam going from palmar to dorsal direction. Lateral views are taken with the ulnar side of the hand on the film cassette and the fingers spread apart to avoid overlap, sometimes supported from underneath. Oblique views can be obtained with the hand placed palm down and the radial side rotated 45 degrees up away from the surface, with the fingers extended and spread apart.
8% lower than market
X-Ray Foot, 2 Views
X-Ray Foot, 2 Views
A radiologic examination of the foot images the bones of the distal lower extremity and may include the tibia, fibula, talus, calcaneus, cuboid, navicular, cuneiform, metatarsals, and phalanges. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Foot x-rays may also be used to determine whether there is satisfactory alignment of foot bones following fracture treatment. Standard views of the foot include top to bottom dorsal planter (DP), lateral (side), oblique (semi-prone position with body and leg partially rotated), and stress study with traction placed on the joint manually.
7% lower than market
X-Ray Foot, 3 Views
X-Ray Foot, 3 Views
A radiologic examination of the foot images the bones of the distal lower extremity and may include the tibia, fibula, talus, calcaneus, cuboid, navicular, cuneiform, metatarsals, and phalanges. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Foot x-rays may also be used to determine whether there is satisfactory alignment of foot bones following fracture treatment. Standard views of the foot include top to bottom dorsal planter (DP), lateral (side), oblique (semi-prone position with body and leg partially rotated), and stress study with traction placed on the joint manually.
5% higher than market
X-Ray Forearm, 2 Views
X-Ray Forearm, 2 Views
A radiologic examination of the forearm is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. Frontal views, or back to front (PA) views and lateral views are necessary to show the radius and ulna and assess the extent and direction of injury. Since the radius and ulna are anatomically connected at both ends of the bones with ligaments, the two bones function in a manner that makes the forearm considered as a single unit when assessing injury. The two standard views taken for x-ray examination of the forearm include the anteroposterior (AP) view, and the lateral view.
6% higher than market
X-Ray Hand, 3 Views
X-Ray Hand, 3 Views
A radiologic examination of the hand is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, or tumors. Hand x-rays are also used to help determine the 'bone age' of children and assess whether any nutritional or metabolic disorders may be interfering with proper development. The posteroanterior projection is taken with the palm down flat and may show not only the metacarpals, phalanges, and interphalangeal joints, but the carpal bones, radius, and ulna as well. Lateral views may be taken with the hand placed upright, resting upon the ulnar side of the palm and little finger with the thumb on top, ideally with the fingers supported by a sponge and splayed to avoid overlap. Oblique views can be obtained with the hand placed palm down and rolled slightly to the outside with the fingertips still touching the film surface. The beam is angled perpendicular to the cassette for oblique projections and aimed at the middle finger metacarpophalangeal joint.
5% higher than market
X-Ray Heel, 2 Views
X-Ray Heel, 2 Views
A radiologic examination of the calcaneus images the bones of the distal lower extremity and usually includes the tibia, fibula, and talus. A radiologic examination of the toe(s) (phalanges) will usually include the metatarsals. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Calcaneus and toe(s) x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views to image the calcaneus include lateral (side) and axial (supine with foot dorsiflexed). Common views to image the toe(s) include top to bottom dorsal planter (DP) and oblique (supine with leg rotated medially to image the 1st, 2nd, and 3rd digits and laterally to image the 4th and 5th digits).
11% lower than market
X-Ray Hip and Pelvis, 2 Views
X-Ray Hip and Pelvis, 2 Views
A radiologic examination of the hip is done on either the left or the right side, which may also include the pelvis. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, degenerative bone conditions, osteomyelitis, arthritis, foreign body, infection, or tumor. Hip standard views that are taken most frequently include the front to back anteroposterior view taken with the patient lying supine and the legs straight, rotated slightly inward; the lateral ‘frog-leg’ view, taken with the hips flexed and abducted and the knees flexed with the soles of the feet placed together; a cross table view with the unaffected hip and knee flexed at a 90 degree angle out of the way and the beam aimed perpendicular to the long axis of the femur on the affected side. Another type of lateral view is taken with the hip flexed 45 degrees and abducted 45 degrees and the beam aimed perpendicular to the table.
5% higher than market
X-Ray Knee, 1-2 Views
X-Ray Knee, 1-2 Views
A radiologic examination of the knee images the femur, tibia, fibula, patella, and soft tissue. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Knee x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views of the knee include front to back anteroposterior (AP), lateral (side), and back to front posteroanterior (PA) with variations in the flexion of the joint, and weight bearing and non-weight bearing postures.
7% higher than market
X-Ray Knee, 4 or More Views
X-Ray Knee, 4 or More Views
A radiologic examination of the knee images the femur, tibia, fibula, patella, and soft tissue. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Knee x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views of the knee include front to back anteroposterior (AP), lateral (side), and back to front posteroanterior (PA) with variations in the flexion of the joint, and weight bearing and non-weight bearing postures.
10% higher than market
X-Ray Lower Sacral Spine, 2-3 Views
X-Ray Lower Sacral Spine, 2-3 Views
A radiologic exam is done of the lumbosacral spine. Frontal, posteroanterior, and lateral views are the most common projections taken. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
6% higher than market
X-Ray Lower Sacral Spine, 4 or More Views
X-Ray Lower Sacral Spine, 4 or More Views
A radiologic exam is done of the lumbosacral spine. Frontal, posteroanterior, and lateral views are the most common projections taken. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
17% higher than market
X-Ray Neck Spine, 2-3 Views
X-Ray Neck Spine, 2-3 Views
A radiologic exam is done of the cervical spine. Anteroposterior and lateral views are the most common projections taken. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
11% higher than market
X-Ray Pelvis, 2 Views
X-Ray Pelvis, 2 Views
A radiologic examination of the sacrum and coccyx is done with at least 2 views obtained. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. Routine views include an anteroposterior (AP) or posteroanterior (PA) view of the sacrum, an AP or PA view of the coccyx, and lateral sacrum/coccyx views. For the sacral view, the patient's pelvis needs to be positioned correctly so the sacrum and sacroiliac joints are symmetrical. Because the coccyx has a forward curvature in relation to the sacrum, it is not automatically visualized when taking an AP view of the sacrum, and so another positioning is done for the coccyx. For lateral views, the patient stands sideways with feet shoulder width apart and arms crossed at the shoulders. Lateral imaging shows the entire 5th lumbar vertebra, the sacrum, and the coccyx. Good sacrum and coccyx imaging requires patient preparation with an empty bladder, clean colon, and removal of clothing in favor of wearing a gown. This is due to the difficulty these obstructions can cause in achieving a good radiographic image. Shielding is done for males, but is not possible for female patients.
1% higher than market
X-Ray Pelvis, 3 Views
X-Ray Pelvis, 3 Views
A diagnostic x-ray examination of the pelvis is done. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. Bones appear white while soft tissue and fluids appear shades of grey. Pelvic x-rays are taken when the patient complains of pain and/or injury in the area of the pelvis or hip joints to assess for fractures and detect arthritis or bone disease. The patient is placed on a table and different views of the pelvis are taken by having the patient position the legs and feet differently, such as turning the feet inward to point at each other, or bending the knees outward with the soles of the feet together in a 'frog-leg' position.
6% higher than market
X-Ray Shoulder, 2 Views
X-Ray Shoulder, 2 Views
A radiologic examination of the shoulder is done. The shoulder is the junction of the humeral head and the glenoid of the scapula. Standard views include the anteroposterior (AP) view and the lateral 'Y' view, named because of the Y shape formed by the scapula when looking at it from the side. An axial view can also be obtained for further assessment when the patient is able to hold the arm in abduction. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
7% higher than market
X-Ray Toes, 2 Views
X-Ray Toes, 2 Views
A radiologic examination of the calcaneus images the bones of the distal lower extremity and usually includes the tibia, fibula, and talus. A radiologic examination of the toe(s) (phalanges) will usually include the metatarsals. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for the cause of pain, limping, or swelling, or conditions such as fractures, dislocations, deformities, degenerative disease, osteomyelitis, arthritis, foreign body, and cysts or tumors. Calcaneus and toe(s) x-rays may also be used to determine whether there is satisfactory alignment of lower extremity bones following fracture treatment. Standard views to image the calcaneus include lateral (side) and axial (supine with foot dorsiflexed). Common views to image the toe(s) include top to bottom dorsal planter (DP) and oblique (supine with leg rotated medially to image the 1st, 2nd, and 3rd digits and laterally to image the 4th and 5th digits).
2% lower than market
X-Ray Upper Arm, 2 Views
X-Ray Upper Arm, 2 Views
A radiologic examination of the humerus is done with a minimum of 2 views taken. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The surgical neck of the humerus is the most common site of fracture. Shaft fractures are often associated with some kind of pathological lesion. X-rays of the humerus can be taken to detect deformities or lesions in the upper arm, such as cysts, tumors, late stage infection, or other diseases as well as a broken bone. The standard views of the humerus include the front to back anteroposterior view and the side, or lateral view.
4% higher than market
X-Ray Upper Digestive Tract without Contrast
X-Ray Upper Digestive Tract without Contrast
A radiologic examination of the upper gastrointestinal (GI) tract images the esophagus, stomach, and duodenum, the first portion of the small intestine. X-ray imaging uses indirect ionizing radiation to take pictures of non-uniform material, such as human tissue, because of its different density and composition, which allows some of the X-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. A radiologic examination of the upper GI tract may be used to diagnose ulcers, tumors, inflammation, hiatal hernia, scarring, obstruction, and abnormal position or configuration of the organs. Patients may present with symptoms such as difficulty swallowing, chest or abdominal pain, vomiting, reflux, indigestion, or blood in the stool. A radiologic examination of the GI tract will often begin with a single, front to back anteroposterior (AP) scout film obtained in an erect or supine position that includes imaging of the kidneys, ureter, and bladder known as a KUB. Under fluoroscopy, the patient orally ingests contrast media and the liquid is watched as it passes down the esophagus into the stomach and duodenum. Spot films are taken as indicated. Medication may be administered to speed up or delay GI motility and movement of the contrast. Delayed images may be required if movement is very slow or to verify emptying of the contrast from the upper GI tract.
9% lower than market
X-Ray Upper Spine, 4-5 Views
X-Ray Upper Spine, 4-5 Views
A radiologic exam is done of the cervical spine. Anteroposterior and lateral views are the most common projections taken. X-ray uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures.
1% higher than market
X-Ray Wrist, 3 Views
X-Ray Wrist, 3 Views
A radiologic examination of the wrist is done. X-ray imaging uses indirect ionizing radiation to take pictures inside the body. X-rays work on non-uniform material, such as human tissue, because of the different density and composition of the object, which allows some of the x-rays to be absorbed and some to pass through and be captured behind the object on a detector. This produces a 2D image of the structures. The radiographs may be taken to look for conditions such as fractures, dislocations, deformities, arthritis, foreign body, infection, or tumor. Wrist standard views include the front to back anteroposterior (AP) or back to front posteroanterior (PA) projection; the lateral view with the elbow flexed and the hand and wrist placed thumb up; and oblique views. Oblique views are obtained with the hand and wrist either supinated or pronated with the hand slightly flexed so the carpal target area lies flat, and then rotating the wrist 45 degrees externally or internally. A more specialized image may be obtained for assessing carpal tunnel. For the carpal tunnel view, the forearm is pronated with the palm down, and the wrist is hyperextended as far as possible by grasping the fingers with the opposite hand and gently hyperextending the joint until the metacarpals and fingers are in a near vertical position.
3% higher than market
X-ray Ribs One Side, Minimum 3 Views
X-ray Ribs One Side, Minimum 3 Views
Rib radiographs (x-rays) are typically obtained following trauma to the rib cage to determine if fractures or other internal injuries are present. The most common views of the ribs are anteroposterior (AP) (frontal) and oblique. There are four positions used for oblique views: right anterior oblique, left anterior oblique, right posterior oblique, and left posterior oblique. Anterior oblique views are obtained with the patient standing and the chest rotated 45 degrees. The arm closest to the x-ray cassette is flexed with the hand resting on the hip. The opposite arm is raised as high as possible. The part of the chest farthest away from the x-ray cassette is the area that is being studied. Posterior oblique views are typically obtained only when the patient is too ill to stand or lay prone for anterior oblique views.
6% higher than market
X-ray lower and sacral spine including bending views minimum 6 views
X-ray lower and sacral spine including bending views minimum 6 views
10% lower than market
X-ray of bones
X-ray of bones
23% lower than market
X-ray of mandible, minimum of 4 views
X-ray of mandible, minimum of 4 views
41% lower than market
X-ray of upper digestive tract with contrast
X-ray of upper digestive tract with contrast
3% higher than market
Memorial Hospital of Converse County Patient Information Price List
INPATIENT ORTHOPEDIC SURGERY CHARGES
INPATIENT ORTHOPEDIC SURGERY CHARGES
Description
Variance
Cervical spinal fusion without complications
Cervical spinal fusion without complications
37% lower than market
Spinal fusion other than the neck without major complications
Spinal fusion other than the neck without major complications
33% higher than market
Total Knee or Hip Replacement
Total Knee or Hip Replacement
19% lower than market
Memorial Hospital of Converse County Patient Information Price List
BILLING PROCESS AND INFORMATION
BILLING PROCESS AND INFORMATION
How You Can Help
Thank you for choosing Memorial Hospital of Converse County for your healthcare needs. As part of our commitment to delivering EXCELLENT service, we want to make understanding and paying your bill as easy as possible. Here are some ways you can help us as we work to make the billing process go smoothly.
• Please give us complete health insurance information.
In addition to your health insurance card, we may ask for a photo ID. If you have been seen at Memorial Hospital of Converse County, let us know if your personal information or insurance information has changed since your last visit.
• Please understand and follow the requirements of your health plan.
Be sure to know your benefits, obtain proper authorization for services and submit referral claim forms if necessary. Many insurance plans require patients to pay a co-payment or deductible amount. You are responsible for paying co-payments required by your insurance provider and Memorial Hospital of Converse County is responsible for collecting co-payments. Please come to your appointment prepared to make your co-payment.
• Please respond promptly to any requests from your insurance provider.
You may receive multiple bills for your hospital visit, including your family doctor, specialists, physicians to read x-rays, give anesthesia, or do blood work. Insurance benefits are the result of your contract with your insurance company. We are a third-party to those benefits and may need your help with your insurance. If your insurance plan does not pay the bill within 90 days after billing, or your claim is denied, you will receive a statement from Memorial Hospital of Converse County indicating the bill is now your responsibility. All bills sent to you are due upon receipt.
Questions about Price and Billing Information
Our goal is for each of our patients and their families to have the best healthcare experience possible. Part of our commitment is to provide you with information that helps you make well informed decisions about your own care.
To ask questions or get more information about a bill for services you've received, please contact our Customer Call Center at 307-358-2122.
If you need more information about the price of a future service, please contact our Price Hotline at 307-358-2122. A CPT code is strongly encouraged when you call. You can obtain the CPT code from the ordering physician.
Financial Assistance
We are pleased to offer financial assistance to patients with limited resources and inadequate medical insurance coverage. Eligibility is determined by total family income/assets. The patient must agree to apply for other assistance available to pay hospital charges (Medicaid, Medicare, private insurance) before being discharged.
Memorial Hospital of Converse County's Charity Care Policy
Memorial Hospital of Converse County provides high quality care to everyone, regardless of their ability to pay.
Memorial Hospital of Converse County's charity care policy includes:
• Substantial charity care guidelines that provide free care for individuals and families who earn less than 200 percent of the federal poverty level.
• Sliding scale fees to provide substantially discounted care for individuals and families who are between 200 and 400 percent of the federal poverty level.
• Hardship policy for those patients who would not otherwise qualify for charity care but have unique circumstances.
In many cases, Memorial Hospital of Converse County offers interest free loans for up to one year to assist patients.
For more information, please contact our Customer Call Center at 307-358-2122.
© 2020 Hospital Pricing Specialists LLC - ALL RIGHTS RESERVED.
#Visitor - 12842